首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
从航天器结构健康状态监测对先进传感技术的需求出发,论述了国内外基于光纤传感的航天器结构健康状态监测研究现状及发展趋势,尤其是对美国国家航空航天局(NASA)、欧洲航天局(ESA)的研究情况做了重点介绍,并总结了国内外光纤传感技术存在的差距。分析光纤传感关键技术,包括光纤光栅密集复用技术、基于光频域反射的解调技术、光纤传感设备轻小型化技术等,提出了光纤传感技术在航天器上的应用特点,以及应用中需要注意的问题,可为相关研究提供参考。  相似文献   

2.
极值理论在复合材料结构健康监测中的应用研究   总被引:1,自引:0,他引:1  
孙亚杰  袁慎芳  王帮峰 《宇航学报》2007,28(5):1366-1370
在充分研究极值理论的基础上将其引入复合材料结构健康监测领域,针对该理论的应用提出了损伤特征参数的概念,描述了通过HHT方法计算该参数的过程。随后研究了基于极值理论对多组传感器损伤特征参数值的分布进行分析从而精确损伤发生时特征参数阈值的方法,详细阐释了利用该方法进行损伤定位的过程。实验证明,该方法的应用能够突出损伤的作用,减少非损伤因素的影响,提高系统的辨识能力,从而准确有效地识别出复合材料结构中的损伤。  相似文献   

3.
巴德欣  董永康 《宇航学报》2020,41(6):730-738
综述了分布式布里渊和瑞利光纤传感技术的主要技术原理、特点及发展概况,包括布里渊光时域分析技术、布里渊相关域分析技术、动态布里渊光纤传感技术、瑞利光时域反射计技术和光频域反射计技术五项主要技术。在此基础上,对分布式光纤传感技术在航空领域的应用进行了回顾,并对其在航天领域的可能应用进行了探讨。  相似文献   

4.
江云秋  张玮  蒋彭龙 《航天控制》2012,30(4):23-26,31
根据航天运输系统对总线技术的需求,介绍了光纤通道协议的特点,对协议结构进行了分析,并重点介绍了FC-AE协议以及MIL-STD-1553B到FC-AE-1553之间的映射,指出光纤通道在未来航天运输领域具有巨大的发展潜力。  相似文献   

5.
基于FBG传感器的飞行器结构健康监测系统研究   总被引:1,自引:0,他引:1  
介绍了结构健康监测技术的发展及其应用状况,在此基础上建立了飞行器结构健康监测系统的开放式体系结构,研究了FBG传感器应用于飞行器结构健康监测系统的相关问题,最后分析了结构健康监测技术未来的发展趋势。  相似文献   

6.
针对高分辨率遥感卫星关键载荷复合材料支撑结构热变形光纤在轨监测需求,研究层状复合材料结构热应变光纤光栅传感特性。首先,采用有限元方法分析得出层状复合材料结构在局部热载荷作用下热应变场分布特征;然后,制作层状复合材料结构试件,建立光纤光栅热应变监测实验系统;最后,以同样尺寸的铝合金结构为对比试件,实验分析T700级碳纤维增强复合材料层压板的热应变传感特性。实验数据表明,在30~100℃范围内,碳纤维复合材料结构热应变随温度升高而近似线性增大,但其热应变量明显小于同一温度下铝合金结构热应变;碳纤维复合材料的热应变场呈各向异性分布特征,100℃时其轴向和径向应变的光纤光栅测量值分别为155.8με、181.3με,与仿真计算结果的平均相对误差为1.58%、1.52%。利用光纤光栅传感器能够有效测量碳纤维复合材料结构的热应变,研究结果可为高分辨率遥感卫星层状复合材料结构光纤在轨监测提供参考。  相似文献   

7.
介绍了利用光纤光栅传感器组成固体火箭发动机光纤智能健康监测系统的基本原理,研究了光纤传感器缠入复合材料壳体的工艺问题,构建了光纤智能实时监测系统,并通过水压试验对试样进行了实时监测,取得了良好的效果,初步验证了光纤智能实时监测系统的功能,表明基于光纤光栅传感器的健康监测系统在固体火箭发动机领域有着良好的应用前景。  相似文献   

8.
文章从介绍平流层飞艇的结构健康监测定义入手,说明了该系统研究的作用和意义以及工作原理。在分析平流层飞艇运行环境和结构可能的损伤模式的基础上,从工程应用角度出发,对结构健康监测系统方案展开了研究,探讨了平流层飞艇结构健康监测系统中的一些关键因素,为今后结构健康监测系统设计提供参考。  相似文献   

9.
为实现空间高低温环境下航天器结构应变参数的精确测量,采用基于法布里–珀罗(Fabry-Perot, F-P)标准具和乙炔(C2H2)气室的复合波长参考的光纤测量方法,对可调谐滤波器透射波长进行校正,以保证解调精度。在解调过程中,采用自适应阈值法解决光源平坦度差引起的F-P标准具寻峰困难问题,并且基于时间预测性最大化原理对透过气室的光源信号进行盲分离,以提高气室波长校正精度。实验结果表明,该方法可实现在高低温环境下光纤传感器中心波长解调偏差小于3 pm,结构应变测量相对误差小于4%,能够满足实际工程应用中航天器结构应变参数的高精度测量需求。  相似文献   

10.
11.
文章从介绍平流层飞艇的结构健康监测定义入手,说明了该系统研究的作用和意义以及工作原理。在分析平流层飞艇运行环境和结构可能的损伤模式的基础上,从工程应用角度出发,对结构健康监测系统方案展开了研究,探讨了平流层飞艇结构健康监测系统中的一些关键因素,为今后结构健康监测系统设计提供参考。  相似文献   

12.
针对航天器结构健康监测(structural health monitoring, SHM)面临的数据传输和存储量过大问题,提出一种基于半张量积压缩感知(semi-tensor product compressed sensing, STP-CS)的形变数据重构方法。该方法基于形变数据的稀疏性,利用降维的随机高斯矩阵对形变数据进行压缩采样。为了验证该方案的可行性,实验研究了不同的观测矩阵维数与重构性能的关系。结果表明:采用该方法对形变信号进行随机采样,当观测矩阵存储空间减少到传统压缩感知(compressed sensing, CS)的1/64,仍能实现较高精度的重构,有效节省了观测矩阵的储存空间;此外,重构时间也随着观测矩阵维数的降低逐渐缩短。因此,该方法为解决航天器SHM面临的数据传输和存储挑战提供了新的解决思路。  相似文献   

13.
14.
李增荣  王志平 《上海航天》2021,38(6):139-145
气凝胶是一种高孔隙率、高比表面积的三维网络状结构的纳米材料。气凝胶独特的纳米结构能有效抑制材料的固体热传导和气体对流传热,是一种性能优异的“超级隔热材料”。此外,与传统的保温材料相比,气凝胶具有轻质、不燃、疏水等特点,符合航空航天领域对隔热、轻质的要求,在美国等国家得到了广泛应用。  相似文献   

15.
介绍热塑塑料及其复合物的种类和在宇航领域中的应用;其潜力能否充分挖掘取决于是否能经济有效地设计和制造这些材料.正涌现出的热塑塑料在竞争激烈的工程领域有可能满足宇航应用的要求.添加合适的纤维加强物使中空成微球状来减小密度和个电特性,“塑性”材料就能广泛应用,热塑塑料当然是其中之一.但热塑塑料也不会完全取代热固性材料,它们只是相互取长补短.  相似文献   

16.
由于注重安全、振动和漏气的原因,近来飞行器有不用火药驱动装置的趋势,这触发了包括形状记忆合金在内的许多替换装置的研究和开发。只要简单地加热至—预定的转变温度以上,形状记忆合金可以从外观高至10%的塑性变形回复。这种固—固相(马氏体—奥氏体)转变足以产生高至350MPa 的回复应力。Nitinol(镍钛金属互化物)是最常用的形状记忆合金,它具有超弹性特性,什么时候发生相转变是由应力而不是热引起。航天应用可得益于形状记忆合金的高做功输出(~1焦耳/克)、较高的疲劳寿命和它的能量耗散特性。然而,工程师们应该注意形状记忆合金的驱动时间常数、热滞后和高的能量消耗特性。特别是航天应用可得益于形状记忆合金驱动装置的尺寸小、耐热性好和完成飞行器上的一次飞行任务。  相似文献   

17.
以建(构)筑物、生命线、农作物、基础设施等受损情况为切入点,介绍了航天光学遥感在灾害特征参数反演、灾害风险评估、灾害监测、灾害损失评估、恢复重建等领域的应用现状和应用能力,指出航天光学遥感与灾害管理之间存在灾区遥感数据实时获取能力不足和相应遥感灾害信息智能提取算法体系不完善等问题,并从航天器设计角度提出了解决对策,如平衡发展多种空间分辨率和多种光谱分辨率光学遥感器,协同发展机动和常规两种成像模式,积极发展星上智能信息提取技术。  相似文献   

18.
张晓岚 《上海航天》2010,27(3):40-45
介绍了智能复合材料的系统组成,以及传感器、致动器和控制器等实现的关键及其功能。讨论了航天结构健康监测,结构自适应、减振与自愈合,以及弹性记忆复合材料(EMC)的原理和典型应用。  相似文献   

19.
复合材料作为新一代结构材料已大量应用在航天遥感器结构中,如相机支架、承力框、遮光罩等。低成本、高效率的制造技术是进一步推进复合材料应用的重要途径,三维(Three dimension,3D)打印技术的出现为复合材料的低成本快速制造提供了可能,随着技术的发展,复合材料的3D打印技术逐渐成为该技术的一个新兴领域。文章介绍了以纤维增强树脂基复合材料为打印材料的3D打印技术的研究情况,结合航天遥感器用复合材料产品的特点对3D打印技术在航天复合材料产品制造上的应用进行了分析。  相似文献   

20.
概述了复合材料现有的固化监测方法,着重论述了机械阻抗分析式和光纤传感式两种固化监测的新方法的工作原理,结构特点及在固体发动机壳体缠绕成型固化中的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号