首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Greenberg R 《Astrobiology》2011,11(2):183-191
Europa has become a high-priority objective for exploration because it may harbor life. Strategic planning for its exploration has been predicated on an extreme model in which the expected oceanic biosphere lies under a thick ice crust, buried too deep to be reached in the foreseeable future, which would beg the question of whether other active satellites might be more realistic objectives. However, Europa's ice may in fact be permeable, with very different implications for the possibilities for life and for mission planning. A biosphere may extend up to near the surface, making life far more readily accessible to exploration while at the same time making it vulnerable to contamination. The chances of finding life on Europa are substantially improved while the need for planetary protection becomes essential. The new National Research Council planetary protection study will need to go beyond its current mandate if meaningful standards are to be put in place.  相似文献   

2.
Varnali T  Edwards HG 《Astrobiology》2010,10(7):711-716
Cyanobacterial colonies produce the radiation-protectant biomolecule scytonemin as part of their response strategy for survival in environmentally stressed conditions in hot and cold deserts. These colonies frequently use sandstone rocks as host matrices for subsurface colonization, which is accompanied by a zone of depletion of iron and transportation of iron compounds to the mineral surface. It is suggested that an iron-scytonemin complex could feature in this survival strategy and facilitate the movement of iron through the rock. Calculations were carried out on several hypothetical iron-scytonemin complexes to evaluate the most stable structure energetically and examine the effect of the complexation of the biomolecule upon the electronic absorption characteristics of the radiation-protectant species. The implications for extraterrestrial planetary detection and analytical monitoring of an iron-scytonemin complex are assessed.  相似文献   

3.
Venus and Mars likely had liquid water bodies on their surface early in the Solar System history. The surfaces of Venus and Mars are presently not a suitable habitat for life, but reservoirs of liquid water remain in the atmosphere of Venus and the subsurface of Mars, and with it also the possibility of microbial life. Microbial organisms may have adapted to live in these ecological niches by the evolutionary force of directional selection. Missions to our neighboring planets should therefore be planned to explore these potentially life-containing refuges and return samples for analysis. Sample return missions should also include ice samples from Mercury and the Moon, which may contain information about the biogenic material that catalyzed the early evolution of life on Earth (or elsewhere). To obtain such information, science-driven exploration is necessary through varying degrees of mission operation autonomy. A hierarchical mission design is envisioned that includes spaceborne (orbital), atmosphere (airborne), surface (mobile such as rover and stationary such as lander or sensor), and subsurface (e.g., ground-penetrating radar, drilling, etc.) agents working in concert to allow for sufficient mission safety and redundancy, to perform extensive and challenging reconnaissance, and to lead to a thorough search for evidence of life and habitability.  相似文献   

4.
For the foreseeable future, the search for evidence of past life in rocks acquired from other planets will be constrained by the amount of sample available and by the fidelity of preservation of any fossils present. What amount of rock is needed to establish the existence of past life? To address this question, we studied a minute amount of rock collected from cherty dolomites of the Proterozoic Buxa Formation in the metamorphically altered tectonically active northeastern Himalaya. In particular, we investigated 2 small petrographic thin sections-one from each of 2 bedded chert horizons exposed in the Ranjit River stratigraphic section northwest of Rishi, Sikkim, India-that together comprise an area of approximately 5 cm(2) (about the size of a US postage stamp) and have a total rock weight of approximately 0.1 g. Optical microscopy, confocal laser scanning microscopy, and Raman spectroscopy and imagery demonstrate that each of the thin sections contains a rich assemblage of 3-dimensionally permineralized organic-walled microfossils. This study, the first report of Proterozoic microfossils in units of the Ranjit tectonic window, demonstrates that firm evidence of early life can be adduced from even a minuscule amount of fossil-bearing ancient rock.  相似文献   

5.
A state's posture on remote sensing of the Earth by orbiting satellites varies depending upon whether it is a ‘sensing’ or a ‘sensed’ state, upon its present economic status, and upon its economic and political history. This article considers the international legal questions related to remote sensing and discusses the political aspects with special emphasis upon the views of the Third World. The author concludes that, unless Third World states and others who support them alter their views somewhat, it is probable that remote sensing of natural resources will continue without specific legal guidelines.  相似文献   

6.
Although initially we will know virtually nothing about any society that our microwave search detects, in all likelihood their society will be far older than ours. It will have evolved mechanisms to ensure longevity. A pessimistic hypothesis would lead us to expect a powerful, aggressive and self-serving society that has vanquished all challengers. If this hypothesis were true, a response by us to their signal could be dangerous. An optimistic hypothesis, that it is the peaceful societies that survive, would lead us to expect a benign or even friendly civilization. If this second hypothesis were true, our response would gratify their scientific curiosity and perhaps lead to a useful exchange of information. Convergent evidence from the quantitative analyses of long-term historical trends and computer modeling support the optimistic hypothesis. Although not conclusive, this analysis suggests that revealing our presence in the Universe is a low risk activity.  相似文献   

7.
For DNA to be used as an informational molecule it must exist in the cell on the edge of stability because all genomic processes require local controlled melting. This presents mechanistic opportunities and problems for genomic DNA from hyperthermophilic organisms, whose unpackaged DNA could melt at optimal temperatures for growth. Hyperthermophiles are suggested to employ the novel positively supercoiling topoisomerase enzyme reverse gyrase (RG) to form positively supercoiled DNA that is intrinsically resistant to thermal denaturation. RG is presently the only archaeal gene that is uniquely found in hyperthermophiles and therefore is central to hypotheses suggesting a hypothermophilic origin of life. However, the suggestion that RG has evolved by the fusion of two pre-existing enzymes has led to hypotheses for a lower temperature for the origin of life. In addition to the action of topoisomerases, DNA packaging and the intracellular ionic environment can also manipulate DNA topology significantly. In the Euryarchaeota, nucleosomes containing minimal histones can adopt two alternate DNA topologies in a salt-dependent manner. From this we hypothesize that since internal salt concentrations are increased following an increase in temperature, the genomic effects of temperature fluctuations could also be accommodated by changes in nucleosome organization. In addition, stress-induced changes in the nucleoid proteins could also play a role in maintaining the genome in the optimal topological state in changing environments. The function of these systems could therefore be central to temperature adaptation and thus be implicated in origin of life scenarios involving hyperthermophiles.  相似文献   

8.
The polymerization of amino acids leading to the formation of peptides and proteins is a significant problem for the origin of life. This problem stems from the instability of amino acids and the difficulty of their oligomerization in aqueous environments, such as seafloor hydrothermal systems. We investigated the stability of amino acids and their oligomerization reactions under high-temperature (180-400°C) and high-pressure (1.0-5.5?GPa) conditions, based on the hypothesis that the polymerization of amino acids occurred in marine sediments during diagenesis and metamorphism, at convergent margins on early Earth. Our results show that the amino acids glycine and alanine are stabilized by high pressure. Oligomers up to pentamers were formed, which has never been reported for alanine in the absence of a catalyst. The yields of peptides at a given temperature and reaction time were higher under higher-pressure conditions. Elemental, infrared, and isotopic analyses of the reaction products indicated that deamination is a key degradation process for amino acids and peptides under high-pressure conditions. A possible NH(3)-rich environment in marine sediments on early Earth may have further stabilized amino acids and peptides by inhibiting their deamination.  相似文献   

9.
The presence of sulfur mass-independent fractionation (S-MIF) in sediments more than 2.45?×?10(9) years old is thought to be evidence for an early anoxic atmosphere. Photolysis of sulfur dioxide (SO(2)) by UV light with λ?相似文献   

10.
The Thermal Hyperspectral Imager (THI) is a low cost, low mass, power efficient instrument designed to acquire hyperspectral remote sensing data in the long-wave infrared. The instrument has been designed to satisfy mass, volume, and power constraints necessary to allow for its accommodation in a 95 kg micro-satellite bus, designed by staff and students at the University of Hawai'i. THI acquires approximately 30 separate spectral bands in the 8–14 μm wavelength region, at 16 wavenumber resolution. Rather than using filtering or dispersion to generate the spectral information, THI uses an interferometric technique. Light from the scene is focused onto an uncooled microbolometer detector array through a stationary interferometer, causing the light incident at each detector at any instant in time to be phase shifted by an optical path difference which varies linearly across the array in the along-track dimension. As platform motion translates the detector array in the along-track direction at a rate of approximately one pixel per frame (the camera acquires data at 30 Hz) the radiance from each scene element can be sampled at each OPD, thus generating an interferogram. Spectral radiance as a function of wavelength is subsequently obtained for each scene element using standard Fourier transform techniques. Housed in a pressure vessel to shield COTS parts from the space environment, the total instrument has a mass of 15 kg. Peak power consumption, largely associated with the calibration procedure, is <90 W. From a nominal altitude of 550 km the resulting data would have a spatial resolution of approximately 300 m. Although an individual imaging event yields approximately 1 Gbit of raw uncompressed data, onboard processing (to convert the interferograms into a conventional spectral hypercube) can reduce this to tens of Mega bits per scene. In this presentation we will describe (a) the rationale for the project, (b) the instrument design, and (c) how the data are processed. Finally we will present data acquired by THI on a laboratory microscope stage to demonstrate the spectro-radiometric quality of the data that the instrument can provide.  相似文献   

11.
Abundant graphite particles occur in amphibolite-grade quartzite of the Archean-Paleoproterozoic Wutai Metamorphic Complex in the Wutaishan area of North China. Petrographic thin section observations suggest that the graphite particles occur within and between quartzite clasts and are heterogeneous in origin. Using HF maceration techniques, the Wutai graphite particles were extracted for further investigation. Laser Raman spectroscopic analysis of a population of extracted graphite discs indicated that they experienced a maximum metamorphic temperature of 513 +/- 50 degrees C, which is consistent with the metamorphic grade of the host rock and supports their indigenicity. Scanning and transmission electron microscopy revealed that the particles bear morphological features (such as hexagonal sheets of graphite crystals) related to metamorphism and crystal growth, but a small fraction of them (graphite discs) are characterized by a circular morphology, distinct marginal concentric folds, surficial wrinkles, and complex nanostructures. Ion microprobe analysis of individual graphite discs showed that their carbon isotope compositions range from -7.4 per thousand to -35.9 per thousand V-PDB (Vienna Pee Dee Belemnite), with an average of -20.3 per thousand, which is comparable to bulk analysis of extracted carbonaceous material. The range of their size, ultrastructures, and isotopic signatures suggests that the morphology and geochemistry of the Wutai graphite discs were overprinted by metamorphism and their ultimate carbon source probably had diverse origins that included abiotic processes. We considered both biotic and abiotic origins of the carbon source and graphite disc morphologies and cannot falsify the possibility that some circular graphite discs characterized by marginal folds and surficial wrinkles represent deflated, compressed, and subsequently graphitized organic-walled vesicles. Together with reports by other authors of acanthomorphic acritarchs from greenschist-amphibolite-grade metamorphic rocks, this study suggests that it is worthwhile to examine carbonaceous materials preserved in highly metamorphosed rocks for possible evidence of ancient life.  相似文献   

12.
Viedma C 《Astrobiology》2007,7(2):312-319
Chiral symmetry breaking occurs when a physical or chemical process spontaneously generates a large excess of one of the two enantiomers--left-handed (L) or right-handed (D)--with no preference as to which of the two enantiomers is produced. From the viewpoint of energy, these two enantiomers can exist with an equal probability, and inorganic processes that involve chiral products commonly yield a racemic mixture of both. The fact that biologically relevant molecules exist only as one of the two enantiomers is a fascinating example of complete symmetry breaking in chirality and has long intrigued the science community. The origin of this selective chirality has remained a fundamental enigma with regard to the origin of life since the time of Pasteur, some 140 years ago. Here, it is shown that two populations of chiral crystals of left and right hand cannot coexist in solution: one of the chiral populations disappears in an irreversible autocatalytic process that nurtures the other one. Final and complete chiral purity seems to be an inexorable fate in the course of the common process of growth-dissolution. This unexpected chiral symmetry breaking can be explained by the feedback between the thermodynamic control of dissolution and the kinetics of the growth process near equilibrium. This "thermodynamic-kinetic feedback near equilibrium" is established as a mechanism to achieve complete chiral purity in solid state from a previously solid racemic medium. The way in which this mechanism could operate in solutions of chiral biomolecules is described. Finally, based on this mechanism, experiments designed to search for chiral purity in a new way are proposed: chiral purity of amino acids or biopolymers is predicted in solid phase from a previously solid racemic medium. This process may have played a key role in the origin of biochirality.  相似文献   

13.
The fossil record of the subsurface biosphere is sparse. Results obtained on subsurface filamentous fabrics (SFF) from >225 paleosubsurface sites in volcanics, oxidized ores, and paleokarst of subrecent to Proterozoic age are presented. SFF are mineral encrustations on filamentous or fibrous substrates that formed in subsurface environments. SFF occur in association with low-temperature aqueous mineral assemblages and consist of tubular, micron-thick (median 1.6 micron) filaments in high spatial density, which occur as irregular masses, matted fabrics, and vertically draped features that resemble stalactites. Micron-sized filamentous centers rule out a stalactitic origin. Morphometric analysis of SFF filamentous forms demonstrates that their shape more closely resembles microbial filaments than fibrous minerals. Abiogenic filament-like forms are considered unlikely precursors of most SFF, because abiogenic forms differ in the distribution of widths and have a lower degree of curvature and a lower number of direction changes. Elemental analyses of SFF show depletion in immobile elements (e.g., Al, Th) and a systematic enrichment in As and Sb, which demonstrates a relation to environments with high flows of water. Sulfur isotopic analyses are consistent with a biological origin of a SFF sample from a Mississippi Valley-Type deposit, which is consistent with data in the literature. Fe isotopes in SFF and active analogue systems, however, allow no discrimination between biogenic and abiogenic origins. The origin of most SFF is explained as permineralized remains of microbial filaments that possibly record rapid growth during phases of high water flow that released chemical energy. It is possible that some SFF formed due to encrustation of mineral fibers. SFF share similarities with Microcodium from soil environments. SFF are a logical target in the search for past life on Mars. The macroscopic nature of many SFF allows for their relatively easy in situ recognition and targeting for more detailed microstructural and geochemical analysis.  相似文献   

14.
Hill HG  Nuth JA 《Astrobiology》2003,3(2):291-304
The synthesis of important prebiotic molecules is fundamentally reliant on basic starting ingredients: water, organic species [e.g., methane (CH(4))], and reduced nitrogen compounds [e.g., ammonia (NH(3)), methyl cyanide (CH(3)CN) etc.]. However, modern studies conclude that the primordial Earth's atmosphere was too rich in CO, CO(2), and water to permit efficient synthesis of such reduced molecules as envisioned by the classic Miller-Urey experiment. Other proposed sources of terrestrial nitrogen reduction, like those within submarine vent systems, also seem to be inadequate sources of chemically reduced C-H-O-N compounds. Here, we demonstrate that nebular dust analogs have impressive catalytic properties for synthesizing prebiotic molecules. Using a catalyst analogous to nebular iron silicate condensate, at temperatures ranging from 500K to 900K, we catalyzed both the Fischer-Tropsch conversion of CO and H(2) to methane and water, and the corresponding Haber-Bosch synthesis of ammonia from N(2) and H(2). Remarkably, when CO, N(2), and H(2) were allowed to react simultaneously, these syntheses also yielded nitrogen-containing organics such as methyl amine (CH(3)NH(2)), acetonitrile (CH(3)CN), and N-methyl methylene imine (H(3)CNCH(2)). A fundamental consequence of this work for astrobiology is the potential for a natural chemical pathway to produce complex chemical building blocks of life throughout our own Solar System and beyond.  相似文献   

15.
Bacterial spores have been considered as microbial life that could survive interplanetary transport by natural impact processes or human spaceflight activity. Deposition of terrestrial microbes or their biosignature molecules onto the surface of Mars could negatively impact life detection experiments and planetary protection measures. Simulated Mars solar radiation, particularly the ultraviolet component, has been shown to reduce spore viability, but its effect on spore germination and resulting production of biosignature molecules has not been explored. We examined the survival and germinability of Bacillus subtilis spores exposed to simulated martian conditions that include solar radiation. Spores of B. subtilis that contain luciferase resulting from expression of an sspB-luxAB gene fusion were deposited on aluminum coupons to simulate deposition on spacecraft surfaces and exposed to simulated Mars atmosphere and solar radiation. The equivalent of 42 min of simulated Mars solar radiation exposure reduced spore viability by nearly 3 logs, while germination-induced bioluminescence, a measure of germination metabolism, was reduced by less than 1 log. The data indicate that spores can retain the potential to initiate germination-associated metabolic processes and produce biological signature molecules after being rendered nonviable by exposure to Mars solar radiation.  相似文献   

16.
ISO 21494《航天系统——磁试验》规定了实施系统级和分系统级航天器以及航天器部组件磁试验的方法。该标准的发布对于增强我国在航天系统环境试验领域的国际影响力和话语权具有重要意义。文章介绍了ISO航天标准的概况,ISO 21494标准的制定背景,总结了有关航天技术成果向国际标准转化的过程和标准编制的成功经验,以期为主导或参与其他国际标准的制定提供借鉴和指导。  相似文献   

17.
Acetylene occurs, by photolysis of methane, in the atmospheres of jovian planets and Titan. In contrast, acetylene is only a trace component of Earth's current atmosphere. Nonetheless, a methane-rich atmosphere has been hypothesized for early Earth; this atmosphere would also have been rich in acetylene. This poses a paradox, because acetylene is a potent inhibitor of many key anaerobic microbial processes, including methanogenesis, anaerobic methane oxidation, nitrogen fixation, and hydrogen oxidation. Fermentation of acetylene was discovered approximately 25 years ago, and Pelobacter acetylenicus was shown to grow on acetylene by virtue of acetylene hydratase, which results in the formation of acetaldehyde. Acetaldehyde subsequently dismutates to ethanol and acetate (plus some hydrogen). However, acetylene hydratase is specific for acetylene and does not react with any analogous compounds. We hypothesize that microbes with acetylene hydratase played a key role in the evolution of Earth's early biosphere by exploiting an available source of carbon from the atmosphere and in so doing formed protective niches that allowed for other microbial processes to flourish. Furthermore, the presence of acetylene in the atmosphere of a planet or planetoid could possibly represent evidence for an extraterrestrial anaerobic ecosystem.  相似文献   

18.
Bacterial spores have been used as model systems for studying the theory of interplanetary transport of life by natural processes such as asteroidal or cometary impacts (i.e., lithopanspermia). Because current spallation theory predicts that near-surface rocks are ideal candidates for planetary ejection and surface basalts are widely distributed throughout the rocky planets, we isolated spore-forming bacteria from the interior of near-subsurface basalt rocks collected in the Sonoran desert near Tucson, Arizona. Spores were found to inhabit basalt at very low concentrations (相似文献   

19.
Calcification and silicification processes of cyanobacterial mats that form stromatolites in two caldera lakes of Niuafo'ou Island (Vai Lahi and Vai Si'i) were evaluated, and their importance as analogues for interpreting the early fossil record are discussed. It has been shown that the potential for morphological preservation of Niuafo'ou cyanobacteria is highly dependent on the timing and type of mineral phase involved in the fossilization process. Four main modes of mineralization of cyanobacteria organic parts have been recognized: (i) primary early postmortem calcification by aragonite nanograins that transform quickly into larger needle-like crystals and almost totally destroy the cellular structures, (ii) primary early postmortem silicification of almost intact cyanobacterial cells that leave a record of spectacularly well-preserved cellular structures, (iii) replacement by silica of primary aragonite that has already recrystallized and obliterated the cellular structures, (iv) occasional replacement of primary aragonite precipitated in the mucopolysaccharide sheaths and extracellular polymeric substances by Al-Mg-Fe silicates. These observations suggest that the extremely scarce earliest fossil record may, in part, be the result of (a) secondary replacement by silica of primary carbonate minerals (aragonite, calcite, siderite), which, due to recrystallization, had already annihilated the cellular morphology of the mineralized microbiota or (b) relatively late primary silicification of already highly degraded and no longer morphologically identifiable microbial remains.  相似文献   

20.
A commonly accepted view is that life began in a marine environment, which would imply the presence of inorganic ions such as Na+, Cl-, Mg2+, Ca2+, and Fe2+. We have investigated two processes relevant to the origin of life--membrane self-assembly and RNA polymerization--and established that both are adversely affected by ionic solute concentrations much lower than those of contemporary oceans. In particular, monocarboxylic acid vesicles, which are plausible models of primitive membrane systems, are completely disrupted by low concentrations of divalent cations, such as magnesium and calcium, and by high sodium chloride concentrations as well. Similarly, a nonenzymatic, nontemplated polymerization of activated RNA monomers in ice/eutectic phases (in a solution of low initial ionic strength) yields oligomers with > 80% of the original monomers incorporated, but polymerization in initially higher ionic strength aqueous solutions is markedly inhibited. These observations suggest that cellular life may not have begun in a marine environment because the abundance of ionic inorganic solutes would have significantly inhibited the chemical and physical processes that lead to self-assembly of more complex molecular systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号