首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Links between climate and Earth’s orbit have been proposed for about 160 years. Two decisive advances towards an astronomical theory of palæoclimates were Milankovitch’s theory of insolation (1941) and independent findings, in 1976, of a double precession frequency peak in marine sediment data and from celestial mechanics calculations. The present chapter reviews three essential elements of any astronomical theory of climate: (1) to calculate the orbital elements, (2) to infer insolation changes from climatic precession, obliquity and eccentricity, and (3) to estimate the impact of these variations on climate. The Louvain-la-Neuve climate-ice sheet model has been an important instrument for confirming the relevance of Milankovitch’s theory, but it also evidences the critical role played by greenhouse gases during periods of low eccentricity. It is recognised today that climatic interactions at the global scale were involved in the processes of glacial inception and deglaciation. Three examples are given, related to the responses of the carbon cycle, hydrological cycle, and the terrestrial biosphere, respectively. The chapter concludes on an outlook on future research directions on this topic.  相似文献   

2.
Evidence suggests that changes of solar irradiance in recent centuries have provided a significant climate forcing and that the sun has been one of the principal causes of long-term climate change. During the past two decades the solar forcing has been much smaller than the climate forcing caused by increasing greenhouse gases. But it is incorrect to assume that the sun necessarily will be an insignificant player in climate change of the 21st century. Indeed, I argue that moderate success in curtailing the growth of anthropogenic climate forcings could leave the sun playing a pivotal role in future climate change.  相似文献   

3.
Solar variability influences the climate of a planet by radiatively forcing changes over a certain timescale; orbital variations of a planet, which yield similar solar forcing modulations, can be studied within the same scientific context. It is known for Earth that obliquity changes have played a critical role in pacing glacial and interglacial eras. For Mars, such orbital changes have been far greater and have generated extreme variations in insolation. Signatures associated with the presence of water ice reservoirs at various positions across the surface of Mars during periods of different orbital configurations have been identified. For this reason, it has been proposed that Mars is currently evolving between ice ages. The advent of climate tools has given a theoretical frame to the study of orbitally-induced climate changes on Mars. These models have provided an explanation to many puzzling observations, which when put together have permitted reconstruction of almost the entire history of Mars in the last 10 million years. This paper proposes to give an overview of the scientific work dedicated to this topic.  相似文献   

4.
Climate is discussed as an integral part of System Earth, determined by a complex interplay of numerous geological, biological and solar processes. The historical and geological record of changing climate and atmospheric CO2 pressure does not support the current popular vision that this greenhouse gas is the dominant climate controlling agent. When empirically ante post tested against past global climate changes, the forecasts of the climate models mainly based on forcing by atmospheric CO2 are not borne out. On the other hand, recent studies show that solar variability rather than changing CO2 pressure is an important, probably the dominant climate forcing factor.  相似文献   

5.
Shine  Keith P. 《Space Science Reviews》2000,94(1-2):363-373
Our current understanding of mechanisms that are, or may be, acting to cause climate change over the past century is briefly reviewed, with an emphasis on those due to human activity. The paper discusses the general level of confidence in these estimates and areas of remaining uncertainty. The effects of increases in the so-called well-mixed greenhouse gases, and in particular carbon dioxide, appear to be the dominant mechanism. However, there are considerable uncertainties in our estimates of many other forcing mechanisms; those associated with the so-called indirect aerosol forcing (whereby changes in aerosols can impact on cloud properties) may be the most serious, as its climatic effect may be of a similar size as, but opposite sign to, that due to carbon dioxide. The possible role of volcanic eruptions as a natural climate change mechanism is also highlighted.  相似文献   

6.
Pollutant gases emitted from the civil jet are doing more and more harm to the environ- ment with the rapid development of the global commercial aviation transport. Low environmental impact has become a new requirement for aircraft design. In this paper, estimation method for emis- sion in aircraft conceptual design stage is improved based on the International Civil Aviation Orga- nization (ICAO) aircraft engine emissions databank and the polynomial curve fitting methods. The greenhouse gas emission (CO2 equivalent) per seat per kilometer is proposed to measure the emis- sions. An approximate sensitive analysis and a multi-objective optimization of aircraft design for tradeoff between greenhouse effect and direct operating cost (DOC) are performed with five geom- etry variables of wing configuration and two flight operational parameters. The results indicate that reducing the cruise altitude and Mach number may result in a decrease of the greenhouse effect but an increase of DOC. And the two flight operational parameters have more effects on the emissions than the wing configuration. The Pareto-optimal front shows that a decrease of 29.8% in DOC is attained at the expense of an increase of 10.8% in greenhouse gases.  相似文献   

7.
Some possible factors of climate changes and of long term climate evolution are discussed with regard of the three terrestrial planets, Earth, Venus and Mars. Two positive feedback mechanisms involving liquid water, i.e., the albedo mechanism and the greenhouse effect of water vapour, are described. These feedback mechanisms respond to small external forcings, such as resulting from solar or astronomical constants variability, which might thus result in large influences on climatic changes on Earth. On Venus, reactions of the atmosphere with surface minerals play an important role in the climate system, but the involved time scales are much larger. On Mars, climate is changing through variations of the polar axis inclination over time scales of ~105–106 years. Growing evidence also exists that a major climatic change happened on Mars some 3.5 to 3.8 Gigayears ago, leading to the disappearance of liquid water on the planet surface by eliminating most of the CO2 atmosphere greenhouse power. This change might be due to a large surge of the solar wind, or to atmospheric erosion by large bodies impacts. Indeed, except for their thermospheric temperature response, there is currently little evidence for an effect of long-term solar variability on the climate of Venus and Mars. This fact is possibly due to the absence of liquid water on these terrestrial planets.  相似文献   

8.
The cosmogenic radionuclides, 10Be, 14C and others, provide a record of the paleo-cosmic radiation that extends >10,000 years into the past. They are the only quantitative means at our disposal to study the heliosphere prior to the commencement of routine sunspot observations in the 17th century. The cosmogenic radionuclides are primarily produced by secondary neutrons generated by the galactic cosmic radiation, and can be regarded, in a sense, as providing an extrapolation of the neutron monitor era into the past. However, their characteristics are quite different from the man-made neutron monitor in several important respects: (1) they are sensitive to somewhat lower cosmic ray energies; (2) their temporal resolution is ~1 to 2 years, being determined by the rapidity with which they are sequestered in ice, biological, or other archives; (3) the statistical precision for annual data is very poor (~19%); however it is quite adequate (~5% for 22-year averages) to study the large variations (±40%) that have occurred in the paleo-cosmic ray record in the past between grand solar minima and maxima. The data contains “noise” caused by local meteorological effects, and longer-term climate effects, and the use of principal component analysis to separate these “system” effects from production effects is outlined. The concentrations of 10Be decreased by a factor of two at the commencement of Holocene, the present-day “interglacial”, due to a 100% increase in the ice accumulation rates in polar regions. The use of the 10Be flux to study heliospheric properties during the last glacial is discussed briefly.  相似文献   

9.
Sulfate-dominated sedimentary deposits are widespread on the surface of Mars, which contrasts with the rarity of carbonate deposits, and indicates surface waters with chemical features drastically different from those on Earth. While the Earth’s surface chemistry and climate are intimately tied to the carbon cycle, it is the sulfur cycle that most strongly influences the Martian geosystems. The presence of sulfate minerals observed from orbit and in-situ via surface exploration within sedimentary rocks and unconsolidated regolith traces a history of post-Noachian aqueous processes mediated by sulfur. These materials likely formed in water-limited aqueous conditions compared to environments indicated by clay minerals and localized carbonates that formed in surface and subsurface settings on early Mars. Constraining the timing of sulfur delivery to the Martian exosphere, as well as volcanogenic H2O is therefore central, as it combines with volcanogenic sulfur to produce acidic fluids and ice. Here, we reassess and review the Martian geochemical reservoirs of sulfur from the innermost core, to the mantle, crust, and surficial sediments. The recognized occurrences and the mineralogical features of sedimentary sulfate deposits are synthesized and summarized. Existing models of formation of sedimentary sulfate are discussed and related to weathering processes and chemical conditions of surface waters. We also review existing models of sulfur content in the Martian mantle and analyze how volcanic activities may have transferred igneous sulfur into the exosphere and evaluate the mass transfers and speciation relationships between volcanic sulfur and sedimentary sulfates. The sedimentary clay-sulfate succession can be reconciled with a continuous volcanic eruption rate throughout the Noachian-Hesperian, but a process occurring around the mid-Noachian must have profoundly changed the composition of volcanic degassing. A hypothetical increase in the oxidation state or in water content of Martian lavas or a decrease in atmospheric pressure is necessary to account for such a change in composition of volcanic gases. This would allow the pre mid-Noachian volcanic gases to be dominated by water and carbon-species but late Noachian and Hesperian volcanic gases to be sulfur-rich and characterized by high SO2 content. Interruption of early dynamo and impact ejection of the atmosphere may have decreased the atmospheric pressure during the early Noachian whereas it remains unclear how the redox state or water content of lavas could have changed. Nevertheless, volcanic emission of SO2 rich gases since the late Noachian can explain many features of Martian sulfate-rich regolith, including the mass of sulfate and the particular chemical features (i.e. acidity) of surface waters accompanying these deposits. How SO2 impacted on Mars’s climate, with possible short time scale global warming and long time scale cooling effects, remains controversial. However, the ancient wet and warm era on Mars seems incompatible with elevated atmospheric sulfur dioxide because conditions favorable to volcanic SO2 degassing were most likely not in place at this time.  相似文献   

10.
The Sun is the most important energy source for the Earth. Since the incoming solar radiation is not equally distributed and peaks at low latitudes the climate system is continuously transporting energy towards the polar regions. Any variability in the Sun-Earth system may ultimately cause a climate change. There are two main variability components that are related to the Sun. The first is due to changes in the orbital parameters of the Earth induced by the other planets. Their gravitational perturbations induce changes with characteristic time scales in the eccentricity (~100,000 years), the obliquity (angle between the equator and the orbital plane) (~40,000 years) and the precession of the Earth’s axis (~20,000 years). The second component is due to variability within the Sun. A variety of observational proxies reflecting different aspects of solar activity show similar features regarding periodic variability, trends and periods of very low solar activity (so-called grand minima) which seem to be positively correlated with the total and the spectral solar irradiance. The length of these records ranges from 25 years (solar irradiance) to 400 years (sunspots). In order to establish a quantitative relationship between solar variability and solar forcing it is necessary to extend the records of solar variability much further back in time and to identify the physical processes linking solar activity and total and spectral solar irradiance. The first step, the extension of solar variability, can be achieved by using cosmogenic radionuclides such as 10Be in ice cores. After removing the effect of the changing geomagnetic field, a 9000-year long record of solar modulation was obtained. Comparison with paleoclimatic data provides strong evidence for a causal relationship between solar variability and climate change. It will be the subject of the next step to investigate the underlying physical processes that link solar variability with the total and spectral solar irradiance.  相似文献   

11.
Anthropogenic aerosols affect the climate system and the hydrological cycle. The net effect of aerosols is to cool the climate system, directly by reflecting sunlight to space, and indirectly by increasing the brightness and cover of clouds that in turn also reflect more sunlight to space. The uncertainty in the aerosol effect on climate is 5 times greater than that of the greenhouse gases. The reason for this is the short aerosol lifetime and chemical complexity, that makes it difficult to represent the global aerosol budget from surface or aircraft measurements. Satellites provide daily global information about the aerosol content, generating large statistics with excellent regional and global representation of the aerosol column concentration, and differentiating fine from coarse aerosol. Here we use observations performed with the MODIS instrument onboard the Terra and Aqua satellites to differentiate natural from anthropogenic aerosols, and to measure the aerosol effect on cloud properties and on the reflectivity of sunlight.  相似文献   

12.
The nature of the climatic response to solar forcing and its geographical coherence is reviewed. This information is of direct relevance for evaluating solar forcing mechanisms and validating climate models. Interpretation of Sun-climate relationships is hampered by difficulties in (1) translating proxy records into quantitative climate parameters (2) obtaining accurate age assessments (3) elucidating spatial patterns and relationships (4) separating solar forcing from other forcing mechanisms (5) lacking physical understanding of the solar forcing mechanisms. This often limits assessment of past solar forcing of climate to identification of correlations between environmental change and solar variability. The noisy character and often insufficient temporal resolution of proxy records often exclude the detection of high frequency decadal and bi-decadal cycles. However, on multi-decadal and longer time scales, notably the ∼90 years Gleisberg, and ∼200 years Suess cycles in the 10Be and 14C proxy records of solar activity are also well presented in the environmental proxy records. The additional ∼1500 years Bond cycle may result from interference between centennial-band solar cycles. Proxy evidence for Sun-climate relations is hardly present for Africa, South America and the marine realm; probably more due to a lack of information than a lack of response to solar forcing. At low latitudes, equatorward movement of the ITCZ (upward component of the Hadley cell) occurs upon a decrease in solar activity, explaining humidity changes for (1) Mesoamerica and adjacent North and South American regions and (2) East Africa and the Indian and Chinese Monsoon systems. At middle latitudes equatorward movement of the zonal circulation during solar minima probably (co-)induces wet and cool episodes in Western Europe, and Terra del Fuego as well as humidity changes in Southern Africa, Australia, New Zealand and the Mediterranean. The polar regions seem to expand during solar minima which, at least for the northern hemisphere is evident in southward extension of the Atlantic ice cover. The forcing-induced migration of climate regimes implies that solar forcing induces a non linear response at a given location. This complicates the assessment of Sun-climate relations and calls for nonlinear analysis of multiple long and high resolution records at regional scale. Unfortunately nonlinear Sun-climate analysis is still a largely barren field, despite the fact that major global climate configurations (e.g. the ENSO and AO) follow nonlinear dynamics. The strength of solar forcing relative to other forcings (e.g. volcanism, ocean circulation patterns, tides, and geomagnetism) is another source of dynamic responses. Notably the climatic effects of tides and geomagnetism are hitherto largely enigmatic. Few but well-dated studies suggest almost instantaneous, climatic deteriorations in response to rapid decreases in solar activity. Such early responses put severe limits to the solar forcing mechanisms and the extent of this phenomenon should be a key issue for future Sun-climate studies.  相似文献   

13.
Nerem  R.S.  Wahr  J.M.  Leuliette  E.W. 《Space Science Reviews》2003,108(1-2):331-344
The Gravity Recovery and Climate Experiment (GRACE), which was successfully launched March 17, 2002, has the potential to create a new paradigm in satellite oceanography with an impact perhaps as large as was observed with the arrival of precision satellite altimetry via TOPEX/Poseidon (T/P) in 1992. The simulations presented here suggest that GRACE will be able to monitor non-secular changes in ocean mass on a global basis with a spatial resolution of ≈500 km and an accuracy of ≈3 mm water equivalent. It should be possible to recover global mean ocean mass variations to an accuracy of ≈1 mm, possibly much better if the atmospheric pressure modeling errors can be reduced. We have not considered the possibly significant errors that may arise due to temporal aliasing and secular gravity variations. Secular signals from glacial isostatic adjustment and the melting of polar ice mass are expected to be quite large, and will complicate the recovery of secular ocean mass variations. Nevertheless, GRACE will provide unprecedented insight into the mass components of sea level change, especially when combined with coincident satellite altimeter measurements. Progress on these issues would provide new insight into the response of sea level to climate change. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
15.
The climate response to changes in radiative forcing depends crucially on climate feedback processes, with the consequence that solar and greenhouse gas forcing have both similar response patterns in the troposphere. This circumstance complicates significantly the attribution of the causes of climate change. Additionally, the climate system displays a high level of unforced intrinsic variability, and significant variations in the climate of many parts of the world are due to internal processes. Such internal modes contribute significantly to the variability of climate system on various time scales, and thus compete with external forcing in explaining the origin of past climate extremes. This highlights the need for independent observations of solar forcing including long-term consistent observational records of the total and spectrally resolved solar irradiance. The stratospheric response to solar forcing is different from its response to greenhouse gas forcing, thus suggesting that stratospheric observations could offer the best target for the identification of the specific influence of solar forcing on climate.  相似文献   

16.
Instrumental and paleodata from the last centuries are investigated to get circumstantial evidence for external influences on the Earth's climate machine. Such influences could be of extraterrestrial and/or anthropogenic origin. Anthropogenic influences are separated from solar on superdecadal time scales and on a hemispheric level using a non-linear regression model. The function to be explained is the northern hemispheric temperature. The model contains two forcing components explicitly: A parameterized anthropogenic component, which describes the aggregated effect of greenhouse gases, aerosols and other anthropogenic climate impacts. A solar component, which describes the solar variability history. The solution of the regression model allows, under certain assumptions, a functional separation of the variability components and provides an estimation of their relative contributions to global warming during the last 140 years.  相似文献   

17.
The Influence of Total Solar Irradiance on Climate   总被引:7,自引:0,他引:7  
Cubasch  U.  Voss  R. 《Space Science Reviews》2000,94(1-2):185-198
To estimate the effect of the solar variability on the climate, two estimates of the solar intensity variations during the last three centuries have been used as forcing in numerical simulations. The model employed to carry out the experiments was the same coupled global ocean-atmosphere model used in a number of studies to assess the effect of the anthropogenic greenhouse gases on climate. The near surface temperature and the tropospheric temperature distribution shows a clear response to the variability of the solar input. Even the thermohaline circulation reacts on the large amplitudes in the forcing. In the stratosphere, the response pattern is similar as in the observations, however, the 11-year cycle found in the forcing data does not excite an appreciable response. This might be due to the missing parameterisation of the increase in the UV-radiation at the solar cycle maximum and the connected increase of the stratospheric ozone concentration.  相似文献   

18.
The ISO-SWS instrument offering a large wavelength coverage and a resolution well adapted to the solid phase has changed our knowledge of the physical-chemical properties of ices in space. The discovery of many new ice features was reported and the comparison with dedicated laboratory experiments allowed the determination of more accurate abundances of major ice components. The presence of CO2 ice has recently been confirmed with the SWS (Short Wavelength Spectrometer) as a dominant ice component of interstellar grain mantles. The bending mode of CO2 ice shows a particular triple-peak structure which provides first evidence for extensive ice segregation in the line-of-sight toward massive protostars. A comparison of interstellar and cometary ices using recent ISO data and ground-based measurements has revealed important similarities but also indicated that comets contain, beside pristine interstellar material, admixtures of processed material. The investigation of molecules in interstellar clouds is essential to reveal the link between dust in the interstellar medium and in the Solar System. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
This article reviews our knowledge of long-term changes and trends in the upper atmosphere and ionosphere. These changes are part of complex and comprehensive pattern of long-term trends in the Earth’s atmosphere. They also have practical impact. For example, decreasing thermospheric density causes the lifetime of orbiting space debris to increase, which is becoming a significant threat to important satellite technologies. Since the first paper on upper atmosphere trends was published in 1989, our knowledge has progressed considerably. Anthropogenic emissions of greenhouse gases affect the whole atmosphere, not only the troposphere. They cause warming in the troposphere but cooling in the upper atmosphere. Greenhouse gases such as carbon dioxide are not the only driver of long-term changes and trends in the upper atmosphere and ionosphere. Anthropogenic changes of stratospheric ozone, long-term changes of geomagnetic and solar activity, and other drivers play a role as well, although greenhouse gases appear to be the main driver of long-term trends. This makes the pattern of trends more complex and variable. A?consistent, although incomplete, scenario of trends in the upper atmosphere and ionosphere is presented. Trends in F2-region ionosphere parameters, in mesosphere-lower thermosphere dynamics, and in noctilucent or polar mesospheric clouds, are discussed in more detail. Advances in observational and theoretical analysis have explained some previous discrepancies in this global trend scenario. An important role in trend investigations is played by model simulations, which facilitate understanding of the mechanisms behind the observed trends.  相似文献   

20.
Cosmogenic radionuclides are more and more used in solar activity reconstructions. However, the cosmogenic radionuclide signal also contains a climate component. It is therefore crucial to eliminate the climate information to allow a better interpretation of the reconstructed solar activity indices. In this paper the method of principal components is applied to 10Be data from two ice cores from opposite hemispheres as well as to 14C data from tree rings. The analysis shows that these records are dominated by a common signal which explains about 80% of the variance on multi decadal to multi millennial time scales, reflecting their common production rate. The second and third components are significantly different for 14C and 10Be. They are interpreted as system effects introduced by the transport of 10Be and 14C from the atmosphere where they are produced to the respective natural archives where they are stored. Principal component analysis improves significantly extraction of the production signal from the cosmogenic isotope data series, which is more appropriate for astrophysical and terrestrial studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号