首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
采用数值计算方法对氧化亚氮/丙烷火炬式点火器的燃烧室和火炬流场特性进行了数值仿真研究,获得了点火器在定混合比工况下工质流量对火炬性能的影响以及定流量工况下余氧系数对火炬性能的影响:在定余氧系数0.350工况下点火器燃烧室压强、火炬功率和点火有效长度与点火器的流量基本呈线性关系,有效火炬长度与实验中所观察到的基本一致;在定流量9 g/s工况下点火器燃烧室压强、喷管出口温度、火炬功率和点火有效长度随余氧系数的不断增加均先迅速增加到最高值后开始逐渐减小,燃烧室压强、喷管出口温度、火炬功率和点火有效长度的计算最高值分别为1.73 MPa,2 823 K,33.14 kW和86.5 mm.  相似文献   

2.
固体火箭发动机喷管传热与壁面烧蚀的耦合计算分析   总被引:1,自引:0,他引:1  
为研究某型固体发动机在地面工作过程中喷管的受热与烧蚀,对其工作后140 s内复合喷管壁面受到管内高温喷流辐射与对流加热,以及发动机外部环境辐射与对流冷却条件下的壁面受热与材料热解烧蚀建立一维非稳态热分析模型进行计算分析。其中,喷管材料采用金属基体内衬高硅氧-酚醛复合隔热材料构成,高温喷流对喷管的辐射加热采用非灰参与性介质的封闭腔辐射换热模型计算,对喷管的对流加热采用巴兹公式计算,复合喷管壁面材料升温后的热解分为基体材料升温-基体材料热解-热解层炭化-Si O2熔融-炭化层脱落五个阶段进行分析。研究发现,喷管收敛段和喉部主要受到高温喷流的辐射加热,内壁辐射热流约为对流热流的2.5倍,喉部下游因喷流温度下降,速度激增,内壁对流热流超过辐射热流,在扩张段尾部,内壁的辐射热流再次超过对流热流;发动机工作过程中,喷管收敛段和喉部壁面的高硅氧-酚醛复合隔热材料随时间逐渐被烧蚀,烧蚀厚度随时间上升,喉部烧蚀厚度最大,140 s时烧蚀厚度达到8 mm,平均烧蚀速率为0.057 mm/s;喷管扩张段中后段喷流温度大幅下降,壁面内高硅氧-酚醛复合隔热材料未烧蚀;沿喷管壁面厚度自内向外,壁面温度急剧下降,发动机工作后16 s时,喉部截面处内壁温度达到2700 K,而外壁温度仅为340 K。  相似文献   

3.
采用化学包覆法制备Mo-(10%) ZrC复合喷涂粉末,采用气氛保护等离子喷涂成形技术结合低压热等静压致密化技术制备内径为8 mm、壁厚16.5 mm、长30 mm的某实验型固体火箭发动机Mo/ZrC复合喷管,测试喷管在地面点火试车条件下的抗热震烧蚀性能。研究结果表明,气氛保护等离子喷涂成形Mo/ZrC复合喷管经1800℃、10 MPa处理60 min后,微细ZrC颗粒均匀分布,断口晶粒仅2~5μm,致密度达94.5%。经1800℃、10 MPa处理300 min后,Mo/ZrC复合喷管由层片结构转化为颗粒状结构,致密度提高至96.8%,显微硬度及拉伸强度分别达259.8 HV0.025及138.9 MPa。地面试车实验后,Mo/ZrC复合喷管整体结构完好,未出现炸裂和破碎现象,抗热震烧蚀性能良好,其线烧蚀率仅为0.18 mm/20 s。地面试车过程中,机械剥蚀、熔化烧蚀及热化学烧蚀等三种烧蚀机制同时发生,Mo/ZrC复合喷管烧蚀程度依次为喉部收敛段扩散段。  相似文献   

4.
固体火箭发动机喷管分离流动数值模拟及试验研究   总被引:4,自引:0,他引:4  
对地面条件下大面积比喷管出现的分离流动进行了数值计算分析和试验。首先,利用商用CFD软件进行做数值计算,计算了多种工况,分析了燃烧室压强、喷管型面对分离流动的影响;然后,利用某型号固体火箭发动机进行喷管分离流试验,测得了喷管壁面上沿轴向的压强分布数据。试验捕捉到的与流场数值计算中得到的分离点位置相近,验证了流场数值计算的准确性,数值计算和试验为进一步深入研究打下基础。  相似文献   

5.
以降低传统碳/酚醛复合材料密度为目的,在对复合材料密度进行理论分析计算的基础上,采用在酚醛树脂中添加轻质填料的方法制备低密度碳/酚醛复合材料,按照正交实验法对轻质填料含量以及复合材料制备工艺参数进行分析与优化。结果表明,分别采用聚丙烯腈基碳纤维和粘胶基碳纤维作为增强材料,研制的碳/酚醛复合材料的密度分别为1.339 g/cm~3和1.211 g/cm~3,拉伸强度分别为294 MPa和131 MPa,剪切强度分别为15.0 MPa和14.7 MPa,室温热导率分别为0.215 W/(m·K)和0.476 W/(m·K),200℃热导率分别为0.340 W/(m·K)和0.599 W/(m·K),氧乙炔线烧蚀率分别为0.011 mm/s和0.030 mm/s,复合材料密度降低的同时,其他性能满足固体火箭发动机喷管烧蚀防热材料的使用要求。  相似文献   

6.
导弹在高空中作机动飞行时易出现内弹道异常现象,严重时可能导致飞行任务失败。为了了解横向过载对固体火箭发动机内弹道性能的影响,对飞行过载下发动机内弹道性能进行更好地预示,建立了一种非均匀燃面退移离散坐标求解方法。从简单的内孔燃烧管型装药到常用的复杂星孔药型,利用离散坐标求解方法模拟横向过载下推进剂的燃面退移,得出了不同过载下的燃面退移规律,计算了燃面面积的变化情况;同时,将不同微元处的面积和燃速相对应,预示了横向过载下发动机的内弹道特性。结果表明,横向过载导致推进剂燃烧发生偏心,燃烧室压强提高,绝热层提前暴露。100g横向过载下,燃烧室压强增加4%,压强峰值出现时间0.4 s,绝热层暴露时间增加1.6 s;星孔药型燃面的下降段数等于星角数N/2+1。分析了横向过载对燃面退移及发动机内弹特性的影响,对发动机设计具有指导意义。  相似文献   

7.
固液发动机燃面退移控制因素分析   总被引:1,自引:1,他引:0       下载免费PDF全文
何快  潘科玮  赵瑜 《上海航天》2017,34(1):62-66
为获得固液发动机固体燃料燃面退移的控制因素和机理,开展了数值仿真和试验研究。建立二维轴对称计算模型,考虑燃料与氧化剂的混合燃烧和流动过程,计算得到了固液发动机工作过程中的温度、压强、速度和组分的分布,以及不同时刻固体燃料的燃面形貌。仿真与试验结果的对比证明了计算方法的有效性。结果表明:固液发动机的燃面呈现显著的非平行退移特征;燃烧室压强对燃面退移不均匀性的影响可忽略;控制燃面退移的主要因素是燃气传向固体燃料表面的热流密度,燃料表面的温度变化是宏观表现。在靠近喷嘴位置,燃面退移的热量传递主要受燃烧反应过程控制,而靠近喷管处燃面退移的热量传递主要受燃气流动过程控制。研究为固液发动机的装药优化设计和高效燃烧组织提供了理论依据。  相似文献   

8.
采用数值方法求解超音速分离线(SSSL)喷管内流场,研究了不同摆角对喷管流场分布的影响,对比分析超音速分离线与亚音速分离线喷管的轴向推力、径向推力及偏转放大因子随喷管摆角的变化规律,为超音速分离线喷管的设计研究提供理论参考。计算结果表明,摆动对超音速分离线喷管内流场影响显著,随着摆角的增大,内流场的非对称性和激波强度均增加;在相同摆管的轴向力分力略有减小,而径向分力则呈现增大的趋势;超音速分离线喷管与亚音速分离线喷管的径向分力比值,即偏转放大因子则随喷管摆角呈先增大、后减小的变化规律,本算例中的最佳放大因子1.36,对应的喷管摆角为2.5°;另外,随着摆角增大,超音速分离线喷管内流场Al2O3粒子分布的非对称特性也逐渐加强,活动体小端局部范围粒子浓度显著增大。  相似文献   

9.
为了评估复合喷管热防护性能以及获取喷管烧蚀和结构应力分析的工况条件,运用Fluent流体动力学软件,对复合喷管的结构温度场进行了数值仿真。分析中,采用了两方程RNG k?ω湍流模型和增强型壁面函数,利用流固耦合的计算方法,获得了喷管结构瞬态温度场的计算结果,重点分析了结构温度场最终分布状态和初期传播特点,以及喉衬温度随时间的变化规律,估算了喉衬的烧蚀。分析结果表明,喷管结构热防护性能满足要求,温度最高区域位于喷管收敛段中后部,喉衬线烧蚀量约为2.1 mm,为喷管结构进一步优化设计提供了重要参考依据。  相似文献   

10.
采用化学气相渗透(CVI)和液相浸渍裂解(PIP)混合工艺制备出三维针刺C/C-SiC(材料A、B)和C/C(材料C)复合材料,研究了复合材料的力学、抗热震和耐烧蚀等性能以及SiC涂层对烧蚀性能的影响,并采用扫描电子显微镜分析了材料的断裂面和烧蚀面形貌。结果表明,材料A(SiC基体含量较高)的性能较好,其弯曲强度、线烧蚀率及抗热震系数分别达到238.4 MPa、3.0×10~(-3)mm/s和35.3 kW/m。沉积SiC涂层后,材料A、B和C的线烧蚀率较之前分别降低33.0%、12.5%和37.5%。采用材料A+SiC涂层方案研制的喷管延伸段构件,进行780 s地面热试车考核,试车后构件结构完整。  相似文献   

11.
C/C喉衬热反应边界层内组分分布数值分析   总被引:1,自引:0,他引:1  
为研究C/C喉衬热反应边界层内的组分浓度梯度变化规律,基于C/C喉衬的热化学烧蚀理论,建立了组分输运方程。采用有限速率化学反应模型,对C/C喉衬热反应边界层内的组分分布进行了数值研究。计算结果表明,喷管喉部的热化学烧蚀反应最为剧烈,边界层内的热化学烧蚀反应由化学动力学与组分扩散共同控制。推进剂中含铝与否对组分分布影响较大,燃烧室压强及喷管尺寸影响较小。  相似文献   

12.
将X射线高速实时荧屏分析技术用于无喷管助推器的地面试验中,获得了助推器喉部燃面的退移规律,并由此获得了瞬时燃速和侵蚀比.研究表明,无喷管助推器在工作过程中,喉部燃速呈线性下降趋势,侵蚀比约从1.8降低到0.5.对文中研究的推进荆,在1000 m/s燃气流(喉部)的作用下,当压强大于2.1 MPa时,侵蚀比大于1,并随压强的增大而增加;当压强小于2.1 MPa时,出现负侵蚀现象.文中研究结果为无喷管助推器的性能预示提供了参考.  相似文献   

13.
双脉冲发动机燃烧室局部烧蚀特性分析   总被引:5,自引:1,他引:5  
针对双脉冲发动机第一脉冲燃烧室内绝热层出现局部烧蚀加重现象,对φ203 mm和φ120 mm的2种双脉冲发动机内流场特性进行了仿真,分析了面积突扩在其燃烧室内形成的燃气漩涡流动及相关两相流特性,并通过经验公式计算了燃烧室对流换热分布.通过对比计算结果与实验现象,发现壁面烧蚀加重区域与燃气漩涡区位置基本重合;燃气漩涡区内...  相似文献   

14.
利用FLUENT流场计算软件,对采用潜入和非潜入喷管的全尺寸固体发动机,采用二维轴对称模型和准定常方法进行了内流场模拟计算和对比分析.结果表明,喷管潜入结构可有效地降低发动机后封头壁面附近的燃气速度,从而比非潜入发动机有更好的热防护环境;两种发动机在燃烧室内压强、速度和温度分布大致相同,非潜入喷管发动机在喷管出口轴线处燃气速度比潜入喷管发动机的大,而温度和压强较低.  相似文献   

15.
一种新型热防护涂料研究   总被引:14,自引:0,他引:14  
研究了一种用于超音速飞行器的新型热防护涂料。分析了涂层材料应具有的特性,在此基础上对作为基体的有机硅改性环氧树脂的性能进行了研究,并筛选了改进涂层材料力学性能和隔热性能的填料,最后研究了涂层材料的综合性能。研究结果表明,有机硅改性环氧树脂的拉伸强度达到9.38 MPa,断裂伸长率达到16%,热分解温在340℃~640℃;涂层材料具有良好的力学性能、热性能和烧蚀性能,其拉伸强度为7.1MPa,断裂伸长率为1.04%,附着力为498.4 N/cm2,比热容为1.627×103J/(Kg.K),导热系数为0.146 W/m.K,隔热性能参数为0.087kg2/(m4.s),氧-乙炔烧蚀的线烧蚀率为0.194 mm/s,质量烧蚀率为0.0729 g/s。  相似文献   

16.
为了研究推力最大抛物线(TOP)喷管在不同工作压强下流动分离过程中分离模态间的转换过程,确定其压强分布特点和模态转变发生的临界压强比,对一个TOP喷管进行了多个压比下的冷流试验。通过采集不同位置上的壁面压强,初步确定开机阶段自由激波分离向受限激波分离模态转换发生的喷管压强比(NPR,喷管局部压强与环境压强之比)在17.61~18.49之间,捕捉到了转变过程中的压强不对称现象,并且发现在受限分离激波下游的局部壁面压强高于环境压强。为了获得更多流场细节,用雷诺平均(RANS)方法对实验模型进行了数值模拟,与试验结果最大误差不超过5%,证实了试验中获得的压强分布确实对应了不同的分离模态。  相似文献   

17.
本文根据气动热化学烧蚀机理建立了固体火箭喷管内衬碳/酚醛的炭化烧蚀模型,并进行了扩张段的烧蚀率和温度分布预示计算.碳/酚醛受热时形成炭化层、热解层和基体层,主流和热解气体中具有氧化性的组分在表面与碳发生异相反应,材料的消耗带走了大量的热,有效地保护了基体.采用化学动力学控制的三方程模型、建立了化学反应质量计算方程;采用多层复合结构的瞬态导热方程和坐标变换的方法处理烧蚀移动边界,温度场计算方程;由壁面上的能量守恒关系,取得了烧蚀和温度场的耦合.通过计算,获得了烧蚀率、壁温随时间和沿喷管扩张段长度的变化,以及喷管扩张段材料内部的温度分布.导热方程用隐式格式求解,大大节省了计算机时.  相似文献   

18.
张斌  刘宇  王长辉  任军学 《固体火箭技术》2011,34(2):189-192,201
为了研究长时间工作固体火箭发动机燃烧室的热防护性能,运用三方程烧蚀模型和运动边界显示差分格式,对长时间固体火箭发动机内绝热层烧蚀及温度场进行了耦合计算.计算得到了化学烧蚀率、扩散烧蚀率、燃烧室内壁温度等参数.计算结果表明,所研究的长时间工作发动机燃烧室烧蚀由扩散过程控制.此外,在求解烧蚀子程序时,提出了一种简便有效的赋...  相似文献   

19.
采用CVI+PIC工艺制备了密度为1.35~1.45 g/cm3的C/C多孔体,对多孔体进行LSI快速获得C/C-SiC防热材料,表征了防热材料的微观结构、弯曲性能,对其进行300 s氧乙炔烧蚀试验,检测了筒形C/C-SiC燃烧室热结构缩比构件的整体承压性能。结果表明,采用CVI+PIC方法成型的C/C多孔体LSI后,液相Si主要与树脂炭反应,生成的SiC位于纤维束之间的大孔孔隙中,由炭纤维束与其内部和包覆在纤维束表层的热解炭构成的增强相未受液Si浸蚀。制备的C/C-SiC弯曲强度达122 MPa,弯曲破坏呈现明显的假塑性断裂;筒形C/C-SiC燃烧室热结构缩比件(外径175 mm、壁厚7.5 mm、高度200 mm)水压爆破压力为5.2 MPa。C/C-SiC材料氧乙炔试验线烧蚀率0.000 2~0.000 3 mm/s、质量烧蚀率0.000 1~0.000 3 g/s,材料的烧蚀以热化学烧蚀为主,烧蚀型面整体平滑,烧蚀表面形成了SiO2抗氧化玻璃相和Si纳米线。  相似文献   

20.
为提高石墨的耐烧蚀性能,利用压力浸渗方法将AlSi合金渗入石墨孔隙中获得石墨/AlSi耗散防热复合材料。利用小型烧蚀实验发动机开展了不同推进剂和压强工况下石墨/AlSi耗散防热复合材料喉衬和C/C喉衬的对比烧蚀试验研究,总结了推进剂铝含量、燃烧室压强对相对烧蚀性能影响,并分析石墨/AlSi耗散防热复合材料的抗烧蚀机理。结果表明,石墨/AlSi耗散防热复合材料喉衬线烧蚀率低于相同状态下C/C材料喉衬的线烧蚀率,其中在铝质量含量5%、压强12.5 MPa工况中石墨/AlSi喉衬线烧蚀率降低92%。分析认为石墨/AlSi耗散防热复合材料的抗烧蚀机理主要为:石墨孔隙内的AlSi合金通过熔化和气化相变吸收热量,降低了石墨基体的热负载;AlSi合金的熔化后在表面形成的液态膜阻碍了燃气中氧化性成分向石墨基体中的扩散;合金气化产生的Al、Si蒸气在引射作用下注入边界层,与边界层中氧化组分发生反应,降低其中的氧化组分浓度;AlSi合金氧化后形成的Al_2O_3-SiO_2玻璃态熔融层减弱燃气对喉衬机械剥蚀作用。最终石墨/AlSi耗散防热复合材料喉衬表现出优异的抗烧蚀性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号