首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
宇宙探索     
四、红外和紫外望远镜 红外望远镜 红外望远镜接收红外线探测宇宙. 红外线是可见光波长较长的红端之外到毫米波射电波之间的电磁辐射光谱.宇宙中所有温度低于3000℃、高于-250℃的物体都发射红外线,因此,使用红外望远镜可以观测到温度从3000℃到-250℃的幼年恒星、褐矮星和行星等天体,以及星际尘埃物质和亚毫米波辐射等.  相似文献   

2.
太空新航线     
欧洲下一代 红外空间望远镜更名 1800年12月12日,生于德国的英国天文学家赫歇尔发现了红外线。200年后的这一天,来自世界各地的天文学家们在一次研讨会上,把欧洲下一代红外天文望远镜更名为“赫歇尔空间观测台”。该望远镜原名为“远红外与和亚毫米波望远镜(FIRST)”。会议期间,天文学家们还重新确定了“赫歇尔”望远镜的任务,包括了解宇宙中各星系和恒星最初是如何形成的;与它的前任——欧洲“红外空间望远镜”一样,继续在宇宙的空隙中找水;研究海王星轨道外的凯珀带彗星及小行星类天体,等等。目前人  相似文献   

3.
1989年,美国研制的,价值12亿美元的哈勃空间望远镜将进入太空,开始它历时15年的探测使命。哈勃望远镜能使用可见光、近紫外线/红外线(1200~11000埃)进行观测,能为理论宇宙学家、行星际专家等所有的天文学家提供极为丰富的数据。哈勃望远镜的发射将标志天文卫星发展到一个崭新阶段。今后10年,人们将发射各种类型的自由飞行天文卫星,采用各种观测技术,探测宇宙中大量的γ射线,x射线、紫外线、红外线、微波以及无线电波,因此天文科学将会有新的发展。  相似文献   

4.
X射线望远镜简介 X射线在光谱的紫外线以外,波长10纳米到0.01纳米,具有很高的辐射能量。只有温度不超过100万℃的天体才辐射X射线。超新星遗迹、脉冲星和黑洞周围的气体,以及星系中的星团周围的气体,温度高达1亿℃,是强大的X射线源。类星体中心及其喷流也辐射X射线.太阳和类似太阳的其它恒星,只在其大气层中辐射微弱的X射线。它们构成X射线宇宙,需要用X射线望远镜进行探测。  相似文献   

5.
日本文部省的宇宙科学研究所和通产省,现正共同研制用于搭载在从事无人空间实验和观测的自由飞行器(SFU)上的“红外线天体望远镜”。预计1992年第一次发射时搭载它。设计在今年底结束,1988年计划着手工程模型(EM)设计。宇宙所研究的红外线天体望远镜是一个直径20厘米的小型望远镜。灵敏度好,其能力可望相当于地面直径为2米级的红外线天体望远镜。它在太空中的环境与地面截然不同,既不存在吸收红外线的水蒸汽和二  相似文献   

6.
<正>作为欧空局"宇宙愿景"(Cosmic Vision)计划三大中级任务之一,"欧几里德"(Euclid)探测器,肩负着"暗宇宙"探索的重要使命,将能够观测到宇宙最为黑暗的"角落"。"欧几里得"探测器耗资8.1亿美元,预计于2020年发射,位于日地系的第二拉格朗日点。"欧几里德"探测器重2160千克,将携带1.2米口径的望远镜、1台576百万像素的可见光摄像机和一台近红外摄像机,将花费6年的时间对全天进行扫描,通过测量横跨数十亿光年的星系红外背景,绘制关于宇宙的演变和它的结构图,用以了解宇宙大爆炸以来宇宙的演化,  相似文献   

7.
正斯皮策太空望远镜作为NASA的四大空间望远镜之一,于2003年8月25日发射升空,以观测天体红外波段的方式研究充满无限未知的宇宙,是人类送入太空的最大的红外望远镜。2020年1月30日,斯皮策太空望远镜正式"退役"。它在太空中工作的16年间,拍摄了大量惊为天人的图像,揭示了红外宇宙的美丽景象。斯皮策的命名,是为了纪念天体物理学家莱曼·斯皮策。他在20世纪60年代首先提出把望远镜放入太空以消除地球大气层遮蔽效应的建议,曾直接造就了"哈勃"太空望远镜的诞生。  相似文献   

8.
<正>在经过长达半年多的在轨调试后,美国宇航局终于在2022年7月12日公布了詹姆斯·韦伯空间望远镜试运行阶段拍摄的首批全彩色图像与科学数据。寥寥数张照片以其前无古人的细节震惊了全世界,韦伯望远镜毫无保留地展示出它傲人的能力。不同于哈勃望远镜专注于拍摄可见光波段,“韦伯”的观测范围在红外波段,是人类肉眼不可见的。因此“韦伯”拍摄图像的颜色都是由科学家“手工上色”得到的:针对不同红外波长向可见光波长进行的映射,用人类可以看到的颜色来描述并不可见的红外色彩,  相似文献   

9.
<正>由于美国宇航局研制的红外探测器出现问题,需要重新设计、重新鉴定后才能进行总装,完工时间推迟至少12个月,欧空局"欧几里得"空间望远镜任务将被推迟。"欧几里得"望远镜重约2吨,2011年被欧空局选定为其"宇宙愿景"空间科学计划下的一项中级任务。它将工作在距地球150万千米的日地L-2拉格朗日点,配备一台1.2米口径的望远镜,装备可见光和近红外仪器,用于研究暗能量和暗物质。  相似文献   

10.
乔辉 《国际太空》2022,(8):44-46
<正>北京时间2022年7月12日22时30分左右,天文学家陆续公布了詹姆斯·韦布空间望远镜(JWST)拍摄的首批照片。这组照片包含:船底座星云(Carina Nebula)、南环星云(Southern Ring Nebula)、系外行星WASP-96b光谱图、斯蒂芬五重星系(Stephan’s Quintet)以及韦布首张“宇宙深场”(Deep Field)照片。韦布空间望远镜是由美国国家航空航天局(NASA)主导研发的大型红外空间望远镜,也是迄今为止口径最大的空间望远镜。该望远镜总耗资约100亿美元,历时20多年建造完成,主要用于研究早期宇宙中恒星和星系的演化等。  相似文献   

11.
<正>核分光望远镜阵(Nu STAR)可以看到其他望远镜无法看见的高能X射线,为研究最古老黑洞和最年轻超新星提供了一条新的途径。千百年来,天文学家仅用自己的眼睛来审视我们的宇宙。虽然对我们来说相当有用,但肉眼只能探测到一种类型的电磁辐射——可见光。人类花了很长时间,才把目光移到了这个有限的波长范围之外。1800年,生于德国的英国天文学家威廉·赫歇尔发现了红外辐射;次年,德国物理学家约翰·威廉·里特发现了紫外线。在这之后,微波(1864年)、射电波(1887年)、X射线(1895年)和γ射线(1900年)  相似文献   

12.
在今年四月召开的欧空局一苏联联席会上,双方就今后两个方面的空间研究合作问题进行了讨论。亚毫米波天文学研究是近期合作计划,甚长基线干涉测量是其较长期计划。在亚毫米波天文学研究计划中,苏联准备研制一颗亚毫米波卫星,其波长范围是100微米至1毫米。设计中的卫星需用“进步”号货运飞船改制成“地球—轨道望远镜平台”,进一步改进是在这种飞船上添加一光学系统和一冷却装置。  相似文献   

13.
众眼看宇宙     
王琴 《太空探索》2012,(6):60-61
M104的红外照将望远镜从室女座中最亮的星角宿一(室女座α)向西移动约11度,就可以找到这个美丽的深空天体M104。因星系中央隆起明亮的核以及向四周辐射散开的宇宙尘埃看起来好似一顶草帽,故得名草帽星系。它  相似文献   

14.
宇宙交响乐     
各位是否也曾经仰天赞叹星空的灿烂?我们所能看见,叹为观止的,其实只是宇宙乐章的一小部分。大家都知道,电磁波谱是由不同波长的电磁波组成,当中包括无线电波、红外线、可见光、紫外线、X射线和γ射线。人类肉眼就只能观察到可见光部分罢了。红外线篇红外线通常可分为三部分:近  相似文献   

15.
在观天巨眼系列前十三篇中,我们介绍了光学望远镜,它们只能用来观测天体发出的可见光。其实,天体还发出许多种我们人类的眼睛看不见的光线。如射电波(实际上就是无线电波,天文学上将其称作射电波)、红外线、紫外线、X射线、γ射线等。古代和近代的天文学家不知道这些不可见光线的存在,他们只能在可见光范围内观测宇宙、研究天体。近一二百年来,人们才陆陆续续发现这些看不见的光线,并且陆陆续续研制出许多观测这些天体辐射的特殊的望远镜,使人类对宇宙的认识越来越全面,越来越深入。  相似文献   

16.
X射线望远镜简介 X射线在光谱的紫外线以外,波长10纳米到0.01纳米,具有很高的辐射能量.只有温度不超过100万℃的天体才辐射X射线.  相似文献   

17.
在观天巨眼系列前十三篇中,我们介绍了光学望远镜,它们只能用来观测天体发出的可见光.其实,天体还发出许多种我们人类的眼睛看不见的光线.如射电波(实际上就是无线电波,天文学上将其称作射电波)、红外线、紫外线、X射线、γ射线等.古代和近代的天文学家不知道这些不可见光线的存在,他们只能在可见光范围内观测宇宙、研究天体.近一二百年来,人们才陆陆续续发现这些看不见的光线,并且陆陆续续研制出许多观测这些天体辐射的特殊的望远镜,使人类对宇宙的认识越来越全面,越来越深入.  相似文献   

18.
当代空间红外天文观测技术的发展   总被引:2,自引:0,他引:2  
1 空间红外观测的意义 □□温度低于4000K的天体的辐射主要在红外区,因此是空间红外天文观测的主要对象。其意义体现在以下几个方面: (1) 揭示冷状态的物质 宇宙中从微米大小的尘埃到巨大的行星,它们的温度范围是3~1500K。在这个温度范围内,物体辐射的大多数能量位于红外区。  相似文献   

19.
宇宙探索     
γ射线望远镜简介γ射线在光谱的X射线之外,波长小于0.01纳米,最短波长没有极限,已探测到的最短波长为10亿亿分之一纳米。γ射线具有极高的能量,没有任何一颗恒星和星际气体的温度高到能发射γ射线。只有高速旋转的黑洞、脉冲星和类星体辐射γ射线,高速运行的宇宙射线撞击星际气体的原子时也辐射γ射线,中子星、黑洞碰撞时则可发生γ射线爆发。它们构成γ射线宇宙,需要用γ射线望远镜进行探测。γ射线能穿透宇宙中的物质而跨越数十亿光年的空间,但却不能穿过地球大气层到达地面。不过γ射线撞击大气层的气体原子时会发出闪光、因而在地面上…  相似文献   

20.
木星新风暴     
美国航空航天局(NASA)的科学家通过哈勃太空望远镜和伽利略号太空船所收集的资料,观察到木星中部两个较小的冷风暴结合成为一个相当于地球那么大的巨型旋转风暴,科学家称之为“白色椭圆体”,因它呈白色,形状像一只蛋。高级研究员柯顿博士指出,除了有200年历史的木星“大红点风暴”之外,这个新结合的“白色椭圆体”应该是太阳系中最强烈的风暴。其他风暴,在普通的光和有些红外线波段便可以察看得到,但“白色椭圆体”有部分地方用红外线也看不见。这可能是因为风暴的中央非常寒冷,约-157℃,比它的周围高了一度,因此,它…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号