首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seedlings of azuki bean (Vigna angularis Ohwi et Ohashi) were cultivated under hypergravity conditions, and changes in membrane lipid composition in their epicotyls were analyzed. Under hypergravity conditions at 300g, the levels of total sterols, phospholipids, and fatty acids per fresh weight were kept higher, as compared with 1g controls. In particular, sterol levels were prominently increased by hypergravity. On the other hand, hypergravity did not clearly influence the levels of each phospholipid and glycolipid class, or their fatty acid compositions. Thus, the effect of hypergravity on membrane lipid metabolism was specific for sterol biosynthesis. In various regions of azuki epicotyls, high growth rate was associated with high sterol levels. Hypergravity suppressed elongation growth and stimulated lateral expansion of azuki epicotyls. In the presence of lovastatin, an inhibitor of sterol biosynthesis, at 30 μM, such changes in growth parameters occurred even under 1g conditions, suggesting that lovastatin made epicotyls hypersensitive to the gravitational force. These results support the hypothesis that membrane sterols are involved in maintenance of normal growth capacity of plant organs against gravity.  相似文献   

2.
Lipid peroxidation of plants under microgravity and its simulation.   总被引:1,自引:0,他引:1  
In series of space experiments aboard the biosatellites "Cosmos 1887", "Bion 9", the orbital stations "Salut", "Mir" and under clinostating, changes of lipid peroxidation (LPO) and antioxidation activity (AOA) of Chlorella, Haplopappus tissue culture, wheat and pea roots were determined. The changes had a complex fluctuation character; three steps of response were established: LPO decreasing accompanied by AOA increase; stabilization LPO <==> AOA balance; secondary LPO activation. Most early and highly amplitude decreasing of LPO were fixed in mitochondria. The rate of response have been increased on multicellular level of plants organization.  相似文献   

3.
The degradation of an anionic surfactant (Igepon TC-42) was investigated as part of an integrated study of direct recycling of human hygiene water through hydroponic plant growth systems. Several chemical approaches were developed to characterize the degradation of Igepon and to measure the accumulation of intermediates such as fatty acids and methyl taurine. Igepon was rapidly degraded as indicated by the reduction of methylene blue active substances (MBAS) and component fatty acids. The Igepon degradation rate continued to increase over a period of several weeks following repeated daily exposure to 18 micrograms/l Igepon. The accumulation of free fatty acids and methyl taurine was also observed during decomposition of Igepon. The concentration of methyl taurine was below detection limit (0.2 nmol/ml) during the slow phase of Igepon degradation, and increased to 1-2 nmol/ml during the phase of rapid degradation. These findings support a degradation pathway involving initial hydrolysis of amide to release fatty acids and methyl taurine, and subsequent degradation of these intermediates.  相似文献   

4.
Space and clinostatic experiments revealed that changes of plant cell wall structure and its function depend on type of tissue and duration of influence. It was shown that clinostat conditions reproduce the part of weightlessness biological effects. It is established that various responses of wall structural-metabolic organization occur at microgravity: changes of cell walls ultrastructure and organelles structure; decrease of synthesis of primary plant cell wall; rearrangements of polysaccharides content. It is shown that mechanisms of plant cell wall changes at microgravity are connected with decrease of cellulose crystallization, activation of pectolytic enzymes and rearrangement of calcium balance of apoplast and cytoplasm.  相似文献   

5.
We have examined, in the livers of rats carried aboard the Cosmos 936 biosatellite, the activities of about 30 enzymes concerned with carbohydrate and lipid metabolism. In addition to the enzyme studies, the levels of glycogen and of the individual fatty acids in hepatic lipids were determined. Livers from flight and ground control rats at recovery (R0) and 25 days after recovery (R25) were used for these analyses.

For all parameters measured, the most meaningful comparisons are those made between flight stationary (FS) and flight centrifuged (FC) animals at R0. When these two groups of flight rats were compared at R0, statistically significant decreases in the activity levels of glycogen phosphorylase, -glycerol phosphate acyl transferase, diglyceride acyl transferase, aconitase and 6-phosphogluconate dehydrogenase and an increase in the palmitoyl CoA desaturase were noted in the weightless group (FS). The significance of these findings was strengthened by the fact that all enzyme activities showing alterations at R0 returned to normal 25 days postflight. When liver glycogen and total fatty acids of the two sets of flight animals were determined, significant differences that could be attributed to reduced gravity were observed. The weightless group (FS) at R0 contained, on the average, more than twice the amount of glycogen than did the centrifuged controls (FC) and a remarkable shift in the ratio of palmitate to palmitoleate was noted. These metabolic alterations, both in enzyme levels and in hepatic constituents, appear to be characteristic of the weightless condition. Our data seem to justify the conclusion that centrifugation during flight is equivalent to terrestrial gravity.  相似文献   


6.
The lipid peroxidation (LP) intensity and the activity of the antioxidant enzyme superoxide dismutase (SOD) were studied in chloroplasts of pea (Pisum sativum L.) plants grown for 7 and 14 days under clino-rotation. An increase in LP levels in chloroplasts during both terms of clinorotation in comparison with stationary controls was documented. SOD activity increased in chloroplasts of plants that were clino-rotated for seven days. SOD has a significant protective effect by diminishing the availability of O2-. However, under more prolonged clino-rotation (14 days), SOD activity decreased but was still higher than in the control samples. In accordance with Selye's oxidative stress theory (Selye, 1956; modified by Leshem et al., 1998), plants that were clino-rotated for seven days are presumed to be in a stage of resistance while 14-day plants reached a stage of exhaustion.  相似文献   

7.
Data from a complex cytochemical analysis show that the functional state of chromatin and the level of the cell proliferative activity may be reliable cytological criteria for primary structural and functional changes that result in disturbances of plant growth and development. Autoradiographic and cytophotonetric studies made it possible to establish certain differences, induced by fast rotation (50 rev/min) on the clinostat, in the chromatin state and cell reproduction of the pea seedling root meristem for the initial stages of plant development. There were no essential differences for the given parameters under slow (2 rev/min) clinostatic conditions.  相似文献   

8.
The submicroscopic organization of Chlorella vulgaris cells (strain LARG-1) growing over 30 days on a solid agarized medium aboard the orbital station "Mir" was studied. A number of differences in the ultrastructure of cells of the experimental population compared to the control has been revealed. Thus, changes in the membrane system of plastids, in particular, appearance of numerous vesicles of different diameter and outgrowths of the plastids and their contact with the plasmalemma as well as a considerable decrease of reserve polysaccharide number in the plastids. Moreover, an increase in the size of mitochondria, their cristae and lipid drops in cytoplasm, the formation of more complicated configuration folding of plasmalemma and appearance of small-granular material of mean electron density in the periplasmic space of Chlorella cells grown during space flight, are demonstrated. Comparative cytological analysis has revealed general regularities of rearrangements of the submicroscopic organization in Chlorella cells cultivated on both solid and semiliquid agarized nutrient media.  相似文献   

9.
The effect of high temperatures (35 and 45 degrees C) on microflora of the root zone of radish plants grown in phytotron was evaluated by the response of microorganisms from 9 indicator groups. Phytotron air temperature elevated to 35 degrees C for 20 hours caused no significant changes in qualitative and quantitative composition of the root microflora in experimental plants. By the end of the experiment, the species diversity of microflora had changed. The amount of phytopathogenic microorganisms decreased which can be interpreted as more stable co-existence of microflora with plants. The numbers of microbes from other indicator groups was in dynamic equilibrium. The plants' condition did not deteriorate either. Exposure to the temperature of 45 degrees C for 7 hours have been found to change the numbers and species diversity in the radish root zone microflora. The microorganisms were observed to increase their total numbers at the expense of certain indicator groups. Bacteria increased spore forms at the stage of spores. Colon bacillus bacteria of increased their numbers by the end of experiment by an order. By the end of experiment the roots of experiment plants had microscopic fungi from Mucor, Aspergillus, Trichoderma, Cladosporium genera. The observed changes in the microbial complex seem to be associated with the changes of root emissions and general deterioration of the plants' condition. It is suggested that the response of the microorganisms can be indicative of the condition of plants under investigation.  相似文献   

10.
A study of the association of homocodonic amino acids and selected heterocodonic amino acids with selected nucleotides in aqueous solution was undertaken to examine a possible physical basis for the origin of codon assignments. These interactions were studied using 1H nuclear magnetic resonance spectroscopy (NMR). Association constants for the various interactions were determined by fitting the changes in the chemical shifts of the anomeric and ring protons of the nucleoside moieties as a function of amino acid concentration to an isotherm which described the binding interaction. The strongest association of all homocodonic amino acids were with their respective anticodonic nucleotide sequences. The strength of association was seen to increase with increase in the chain length of the anticodonic nucleotide. The association of these amino acids with different phosphate esters of nucleotides suggests that a definite isomeric structure is required for association with a specified amino acid; the 5'-mononucleotides and (3'-5')-linked dinucleotides are the favored geometries for strong associations. Use of heterocodonic amino acids and nonprotein amino acids supports these findings. We conclude that there is at least a physicochemical, anticodonic contribution to the origin of the genetic code.  相似文献   

11.
Exposure to vacuum predominantly causes the removal of water. As a consequence hydrophobic bonds (e.g. of membranes and proteins) are disrupted and metabolism practically comes to a complete halt. Removal of hydrate water also causes substantial changes regarding the structure of DNA (A-structure likely prevails). Some organisms, however, especially bacterial spores and fungal conidia are so well adapted to extreme dryness that substantial fractions of these organisms survive several months of vacuum even at room temperature. In these organisms some vacuum-induced alterations occur that are not readily reversed by readdition of water; mutations become evident and the amount of DNA covalently bound to protein is drastically increased. The mechanisms of these processes and their possible repair are not yet clear. There is evidence that chemical reactions (e.g. dehydration reactions) are involved although they likely proceed at an extremely low rate. Using the dehydration of serin by vacuum as a model system (the resulting amino acrylic acid is converted into pyruvic acid and ammonia after reexposure to water) we could establish that about 3 out of 100 000 serins are finally converted into pyruvic acid after exposure to 10−6 Torr for 1 week at 55°C. In dry Ar the corresponding rate is only about 1.5.  相似文献   

12.
Data on forelimb and eye lens regeneration in urodeles under spaceflight conditions (SFC) have been obtained in our previous studies. Today, evidence is available that SFC stimulate regeneration in experimental animals rather than inhibit it. The results of control on-ground experiments with simulated microgravity suggest that the stimulatory effect of SFC is due largely to weightlessness. An original experimental model is proposed, which is convenient for comprehensively analyzing neural regeneration under SFC. The initial results described here concern regeneration of neural retina in Pleurodeles waltl newts exposed to microgravity simulated in radial clinostat. After clinorotation for seven days (until postoperation day 16), a positive effect of altered gravity on structural restoration of detached neural retina was confirmed by a number of criteria. Specifically, an increased number of Mullerian glial cells, an increased relative volume of the plexiform layers, reduced cell death, advanced redifferentiation of retinal pigment epithelium, and extended areas of neural retina reattachment were detected in experimental newts. Moreover, cell proliferation in the inner nuclear layer of neural retina increased as compared with control. Thus, low gravity appears to intensify natural cytological and molecular mechanisms of neural retina regeneration in lower vertebrates.  相似文献   

13.
This paper reviews data available from U.S. and U.S.S.R. studies on energy metabolism in the microgravity of space flight. Energy utilization and energy availability in space seem to be similar to those on Earth. However, negative nitrogen balances in space in the presence of adequate energy and protein intakes and in-flight exercise, suggest that lean body mass decreases in space. Metabolic studies during simulated (bed rest) and actual microgravity have shown changes in blood glucose, fatty acids, and insulin levels, suggesting that energy metabolism may be altered during flight. Future research should focus on the interactions of lean body mass, diet, and exercise in space and their roles in energy metabolism during space flight.  相似文献   

14.
Information about compositional changes in plants grown in controlled environments is essential for developing a safe, nutritious diet for a Controlled Ecomological Life-Support System (CELSS). Information now is available for some CELSS candidate crops, but detailed information has been lacking for soybeans. To determine the effect of environment on macronutrient and mineral composition of soybeans, plants were grown both in the field and in a controlled environment where the hydroponic nutrient solution, photosynthetic flux (PPF), and CO2 level were manipulated to achieve rapid growth rates. Plants were harvested at seed maturity, separated into discrete parts, and oven dried prior to chemical analysis. Plant material was analyzed for proximate composition (moisture, protein, lipid, ash, and carbohydrate), total nitrogen (N), nonprotein N (NPN), nitrate, minerals, amino acid composition, and total dietary fiber. The effect of environment on composition varied by cultivar and plant part. Chamber-grown plants generally exhibited the following characteristics compared with field-grown plants: 1) increased total N and protein N for all plant parts, 2) increased nitrate in leaves and stems but not in seeds, 3) increased lipids in seeds, and 4) decreased Ca:P ratio for stems, pods, and leaves. These trends are consistent with data for other CELSS crops. Total N, protein N, and amino acid contents for 350 ppm CO2 and 1000 ppm CO2 were similar for seeds, but protein N and amino acid contents for leaves were higher at 350 ppm CO2 than at 1000 ppm CO2. Total dietary fiber content of soybean leaves was higher with 350 ppm CO2 than with 1000 ppm CO2. Such data will help in selecting of crop species, cultivars, and growing conditions to ensure safe, nutritious diets for CELSS.  相似文献   

15.
In the course of a study of possible mechanism for chemical evolution in the primeval sea, we observed the formation of alpha-amino acids and N-acylamino acids from alpha-oxo acids and ammonia in an aqueous medium. Glyoxylic acid reacted with ammonia to form N-oxalylglycine, which gave glycine in a 5-39% yield after hydrolysis with 6N HCl. Similarly when glyoxylic acid was treated with methylamine it yielded N-oxalylsarcosine, which could be hydrolyzed to sarcosine with 17-25% overall yield upon hydrolysis. Pyruvic acid and ammonia reacted to give N-acetylalanine, which formed alanine in a 3-7% overall yield upon hydrolysis. The pH optima in these reactions were pH 3-4. These reactions were further extended to the formation of other amino acids. Glutamic acid, phenylalanine and serine were formed from alpha-ketoglutaric acid, phenylpyruvic acid and hydroxypyruvic acid, respectively, under similar conditions. N-Succinylglutamic acid was obtained as an intermediate for glutamic acid synthesis. Phenylacetylphenylalanineamide was also isolated as an intermediate for phenylalanine synthesis. Alanine, rather than aspartic acid, was produced from oxaloacetic acid. These reactions provide a novel route for the prebiotic synthesis of amino acids. A mechanism for the reactions is proposed.  相似文献   

16.
The "slow" antigravity muscle adductor longus was studied in rats after 14 days of spaceflight (SF). The techniques employed included standard methods for light microscopy, neural cell adhesion molecule (N-CAM) immunocytochemistry and electron microscopy. Light and electron microscopy revealed myofiber atrophy, segmental necrosis and regenerative myofibers. Regenerative myofibers were N-CAM immunoreactive (N-CAM-IR). The neuromuscular junctions showed axon terminals with a decrease or absence of synaptic vesicles, degenerative changes, vacant axonal spaces and changes suggestive of axonal sprouting. No alterations of muscle spindles was seen either by light or electron microscopy. These observations suggest that muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight. In a separate study, GABA immunoreactivity (GABA-IR) was evaluated at the level of the hindlimb representation of the rat somatosensory cortex after 14 days of hindlimb unloading by tail suspension ("simulated" microgravity). A reduction in number of GABA-immunoreactive cells with respect to the control animals was observed in layer Va and Vb. GABA-IR terminals were also reduced in the same layers, particularly those terminals surrounding the soma and apical dendrites of pyramidal cells in layer Vb. On the basis of previous morphological and behavioral studies of the neuromuscular system after spaceflight and hindlimb suspension it is suggested that after limb unloading there are alterations of afferent signaling and feedback information from intramuscular receptors to the cerebral cortex due to modifications in the reflex organization of hindlimb muscle groups. We propose that the changes observed in GABA immunoreactivity of cells and terminals is an expression of changes in their modulatory activity to compensate for the alterations in the afferent information.  相似文献   

17.
During the last years data have evidenced that alteration in nucleic acid metabolism, expecially increased urinary excretion of modified nucleosides reflects physiological changes in living organism. In relation with the Soyuz-36-Salyut-6-Soyuz-35 mission in 1980 urinary nucleoside excretion of two astronauts /B.F., V.K./ were traced. Individual daily urine samples were collected for 4 days before starting and 6 days after landing and were analysed with improved analytical procedures /affinity chromatography, high Performance liquid chromatography/. Levels of 1-methylinosine, 1-methylguanosine and N,2,2-dimethylguanosine in urine were determined. Thus recorded changes differ considerably at two astronauts. One of the /V.K./ excreted nucleosides normally, another /B.F./ showed increase to 200-400 % levels excretion of above nucleosides on the second day after landing. The peak values disappeared on the 3-6 days after. To interpret this phenomenon extreme factors of space-flight /weightlessness, stress, radiations, etc./ have to be taken into consideration. However, we attach importance to training of astronauts. During the last decade data have evidenced that alterations in the metabolism of nucleic acids especial increased urinary excretion of modified nucleosides reflects physiological and in some cases pathological changes in living organism. In relation with the Soyuz-36-Salyut-6-Soyuz 35 mission urinary excretion of certain modified nucleosides of two astronauts /B.F. and V.K./ were measured. The aim of the measurements was: how the metabolism of transfer ribonucleic acids /tRNAs/ referring to cosmic flight, how it is reflected in urinary excretions of modified nucleosides. For these purposes we studied the excretion of methylguanosine, dimethylguanosine and methylinosine. These nucleosides are the normal minor components of tRNA.  相似文献   

18.
The photosynthetic membrane composition and low temperature fluorescence spectra were analyzed for pea chloroplasts from control and clinostated plants. Clinorotation induces a decrease in the amount of the oligomeric form of the light-harvesting chlorophyll a/b complex (LHCII) and an increase of its monomeric form. Some changes in organization of photosystem 1 (PS1) complex were revealed as well. These changes are in accordance with the variations of fluorescence characteristics and photochemical activity.  相似文献   

19.
The hypothesis on exogenous origin of organic matter on the early Earth is strongly supported by the detection of a large variety of organic compounds (including amino acids and nucleobases) in carbonaceous chondrites. Whether such complex species can be successively delivered by other space bodies (comets, asteroids and interplanetary dust particles) is unclear and depends primarily on capability of the biomolecules to survive high temperatures during atmospheric deceleration and impacts to the terrestrial surface. Recent simulation experiments on amino acid and nucleic acid base pyrolysis under oxygen-free atmosphere demonstrated that simple representatives of these (considered thermally unstable) compounds can survive at 1-10% level a rapid heating at 500-600 degrees C. In the present work, we report on new data on the pyrolysis of amino acids and their homopolymers and discuss implications of their thermal behavior for extraterrestrial delivery.  相似文献   

20.
The major purpose of these experiments were to investigate growth of potato storage organs and starch synthesis in minitubers at slow horizontal clinorotation (2 rpm), which partly mimics microgravity, and a secondary goal was to study the activity and localization of phosphorylase (EC 2.4.1.1) in storage parenchyma under these conditions. Miniplants of Solanum tuberosum L. (cv Adreta) were grown in culture for 30 days for both the vertical control and the horizontal clinorotation. During long-term clinorotation, an acceleration of minituber formation, and an increase of amyloplast number and size in storage parenchyma cells, as well as increased starch content, was observed in the minitubers. The differences among cytochemical reaction intensity, activity of phosphorylase, and carbohydrate content in storage parenchyma cells of minitubers grown in a horizontal clinostat were established by electron-cytochemical and biochemical methods. It is shown that high phosphorylase activity is correlated with increased starch content during extended clinorotation. The results demonstrate the increase in carbohydrate metabolism and possible accelerated growth of storage organs under the influence of microgravity, as mimicked by clinorotation; therefore, clinorotation can be used as a basis for future studies on mechanisms of starch synthesis under microgravity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号