首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of exposure to ionizing radiation on behavior may result from effects on peripheral or on central systems. For behavioral endpoints that are mediated by peripheral systems (e.g., radiation-induced conditioned taste aversion or vomiting), the behavioral effects of exposure to heavy particles (56Fe, 600 MeV/n) are qualitatively similar to the effects of exposure to gamma radiation (60Co) and to fission spectrum neutrons. For these endpoints, the only differences between the different types of radiation are in terms of relative behavioral effectiveness. For behavioral endpoints that are mediated by central systems (e.g., amphetamine-induced taste aversion learning), the effects of exposure to 56Fe particles are not seen following exposure to lower LET gamma rays or fission spectrum neutrons. These results indicate that the effects of exposure to heavy particles on behavioral endpoints cannot necessarily be extrapolated from studies using gamma rays, but require the use of heavy particles.  相似文献   

2.
The effects of exposure to heavy particles on behaviors mediated by the central nervous system (CNS) are qualitatively different than the effects produced by exposure to other types of radiation. One behavior mediated by the CNS is the amphetamine-induced taste aversion, which is produced by pairing a novel tasting solution with injection of amphetamine. When the conditioning day is three days following irradiation, exposing rats to low doses of 56Fe particles (600 MeV/n or 1 GeV/n) eliminates the taste aversion produced by injection of amphetamine, which is dependent upon the integrity of the central dopaminergic system, but has no effect on the aversion produced by injection of lithium chloride which is mediated by the gastrointestinal system. In contrast to the effects obtained using heavy particles, exposing rats to 60CO gamma rays or to fission spectrum neutrons has no selective effect upon the acquisition of either amphetamine- or lithium chloride-induced taste aversions. When the conditioning day occurs four months following exposure to 1 GeV/n 56Fe particles, there is an enhancement of the amphetamine-induced taste aversion. The implications of these findings for approaches to risk assessment are considered.  相似文献   

3.
Future space missions will involve long-term travel beyond the magnetic field of the Earth, where astronauts will be exposed to radiation hazards such as those that arise from galactic cosmic rays. Galactic cosmic rays are composed of protons, alpha particles, and particles of high energy and charge (HZE particles). Research by our group has shown that exposure to HZE particles, primarily 600 MeV/n and 1 GeV/n 56Fe, can produce significant alterations in brain neurochemistry and behavior. However, given that protons can make up a significant portion of the radiation spectrum, it is important to study their effects on neural functioning and on related performance. Therefore, these studies examined the effects of exposure to proton irradiation on neurochemical and behavioral endpoints, including dopaminergic functioning, amphetamine-induced conditioned taste aversion learning, and spatial learning and memory as measured by the Morris water maze. Male Sprague-Dawley rats received a dose of 0, 1.5, 3.0 or 4.0 Gy of 250 MeV protons at Loma Linda University and were tested in the different behavioral tests at various times following exposure. Results showed that there was no effect of proton irradiation at any dose on any of the endpoints measured. Therefore, there is a contrast between the insignificant effects of high dose proton exposure and the dramatic effectiveness of low dose (<0.1 Gy) exposures to 56Fe particles on both neurochemical and behavioral endpoints.  相似文献   

4.
The relative behavioral effectiveness of heavy particles was evaluated. Using the taste aversion paradigm in rats, the behavioral toxicity of most types of radiation (including 20Ne and 40Ar) was similar to that of 60Co photons. Only 56Fe and 93Nb particles and fission neutrons were significantly more effective. Using emesis in ferrets as the behavioral endpoint, 56Fe particles and neutrons were again the most effective; however, 60Co photons were significantly more effective than 18 MeV electrons. These results suggest that LET does not completely predict behavioral effectiveness. Additionally, exposing rats to 10 cGy of 56Fe particles attenuated amphetamine-induced taste aversion learning. This behavior is one of a broad class of behaviors which depends on the integrity of the dopaminergic system and suggests the possibility of alterations in these behaviors following exposure to heavy particles in a space radiation environment.  相似文献   

5.
Exposing rats to heavy particles produces alterations in the functioning of dopaminergic neurons and in the behaviors that depend upon the integrity of the dopaminergic system. Two of these dopamine-dependent behaviors include amphetamine-induced reinforcement, measure using the conditioned place preference procedure, and amphetamine-induced reinforcement, measured using the conditioned place preference procedure, and amphetamine-induced aversion, measured using the conditioned taste aversion. Previous research has shown that exposing rats to 1.0 Gy of 1GeV/n 56Fe particles produced a disruption of an amphetamine-induced taste aversion 3 days following exposure, but produced an apparent enhancement of the aversion 112 days following exposure. The present experiments were designed to provide a further evaluation of these results by examining taste aversion learning 154 days following exposure to 1.0 Gy 56Fe particles and to establish the convergent validity of the taste aversion results by looking at the effects of exposure on the establishment of an amphetamine-induced conditioned place preference 3, 7, and 16 weeks following irradiation. The taste aversion results failed to confirm the apparent enhancement of the amphetamine-induced CTA observed in the prior experiment. However, exposure to 56Fe particles prevented the acquisition of amphetamine-induced place preference at all three-time intervals. The results are interpreted as indicating that exposure to heavy particles can produce long-term changes in behavioral functioning.  相似文献   

6.
Our research over the last several years has suggested that young (3 mo) rats exposed to whole-body 56Fe irradiation show neuronal signal transduction alterations and accompanying motor behavioral changes that are similar to those seen in aged (22-24 mo) rats. Since it has been postulated that 1-2% of the composition of cosmic rays contain 56Fe particles of heavy particle irradiation, there may be significant CNS effects on astronauts on long-term space flights which could produce behavioral changes that could be expressed during the mission or at some time after the return. These, when combined with other effects such as weightlessness and exposure to proton irradiations may even supercede mutagenic effects. It is suggested that by determining mechanistic relationships that might exist between aging and irradiation it may be possible to determine the common factor(s) involved in both perturbations and develop procedures to offset their deleterious effects. For example, one method that has been effective is nutritional modification.  相似文献   

7.
Exposure of rats to high-energy iron particles (600 MeV/amu) has been found to alter behavior after doses as low as 10 rads. The performance of a task that measures upper body strength was significantly degraded after irradiation. In addition, an impairment in the regulation of dopamine release in the caudate nucleus (a motor center in the brain), lasting at least 6 months, was also found and correlated with the performance deficits. A general indication of behavioral toxicity and an index of nausea and emesis, the conditioned taste aversion, was also evident. The sensitivity to iron particles was 10-600 times greater than to gamma photons. These results suggest that behavioral and neurobiological damage may be a consequence of exposure to low doses of heavy particles and that this possibility should be extensively studied.  相似文献   

8.
Exposing rats to particles of high energy and charge (e.g., 56Fe) disrupts neuronal systems and the behaviors mediated by them; these adverse behavioral and neuronal effects are similar to those seen in aged animals. Because cognition declines with age, and our previous study showed that radiation disrupted Morris water maze spatial learning and memory performance, the present study used an 8-arm radial maze (RAM) to further test the cognitive behavioral consequences of radiation exposure. Control rats or rats exposed to whole-body irradiation with 1.0 Gy of 1 GeV/n high-energy 56Fe particles (delivered at the alternating gradient synchrotron at Brookhaven National Laboratory) were tested nine months following exposure. Radiation adversely affected RAM performance, and the changes seen parallel those of aging. Irradiated animals entered baited arms during the first 4 choices significantly less than did controls, produced their first error sooner, and also tended to make more errors as measured by re-entries into non-baited arms. These results show that irradiation with high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere.  相似文献   

9.
Free radicals produced by exposure to heavy particles have been found to produce motor and cognitive behavioral toxicity effects in rats similar to those found during aging. The present research was designed to investigate the effects of exposure to 56Fe particles on the ability of male Sprague-Dawley rats to detect novel arrangements in a given environment. Using a test of spatial memory previously demonstrated to be sensitive to aging, open field activity and reaction to spatial and non-spatial changes were measured in a group that received a dose of 1.5 Gy (n=10) of 56Fe heavy particle radiation or in non-radiated controls (n=10). Animals irradiated with 1.5 Gy of 56Fe particles exhibited some age-like effects in rats tested, even though they were, for the most part, subtle. Animals took longer to enter, visited less and spent significantly less time in the middle and the center portions of the open field, independently of total frequency and duration of activity of both groups. Likewise, irradiated subjects spend significantly more time exploring novel objects placed in the open field than did controls. However, irradiated subjects did not vary from controls in their exploration patterns when objects in the open field were spatially rearranged. Thus, irradiation with a dose of 1.5 Gy of 56Fe high-energy particle radiation elicited age-like effects in general open field exploratory behavior, but did not elicit age-like effects during the spatial and non-spatial rearrangement tasks.  相似文献   

10.
Comparison of experimental data obtained from short (SDEF) and long duration exposure flights (LDEF) recently led to results, which will contribute for the estimation of genetic risk for long and/or repeated stay of man in space. Under orbital conditions biological stress and damage are induced in test subjects by cosmic radiation, especially the high energetic, densely ionizing component of heavy ions. Plant seeds were successful model systems for a biotest in studying the physiological damages and mutagenic effects caused by ionizing radiation in particular stem cells. In this article we present an overview of our space experiments with Arabidopis thaliana seeds. We present first results of investigations on certain damage endpoints (seed germination, plant survival, mutation frequencies), caused by cosmic ionizing radiation in dry dormant plant seeds of Arabidopsis thaliana after different short term (e.g. IML-1 and D-2) and long term (e.g. EURECA and LDEF-1) space exposures. Total dose effects of heavy ions and the other components of the mixed radiation field on damage endpoints and survival after space exposure and gamma-ray preirradiation were obtained. A new method of total dose spectrometry by neutron activation has been applied.  相似文献   

11.
To understand the mechanisms of accelerated heavy ions on biological matter, the responses of spores of B. subtilis to this structured high LET radiation was investigated applying two different approaches. 1) By the use of the Biostack concept, the inactivation probability as a function of radial distance to single particles' trajectory (i.e. impact parameter) was determined in space experiments as well as at accelerators using low fluences of heavy ions. It was found that spores can survive even a central hit and that the effective range of inactivation extends far beyond impact parameters where inactivation by delta-ray dose would be effective. Concerning the space experiment, the inactivation cross section exceeds those from comparable accelerator experiments by roughly a factor of 20. 2) From fluence effect curves, cross sections for inactivation and mutation induction, and the efficiency of repair processes were determined. They are influenced by the ions characteristics in a complex manner. According to dependence on LET, at least 3 LET ranges can be differentiated: A low LET range (app. < 200 keV/micrometers), where cross sections for inactivation and mutation induction follow a common curve for different ions and where repair processes are effective; an intermediate LET range of the so-called saturation cross section with negligible mutagenic and repair efficiency; and a high LET range (>1000 keV/micrometers) where the biological endpoints are majorly dependent on atomic mass and energy of the ion under consideration.  相似文献   

12.
Radiation biology in space: a critical review.   总被引:12,自引:0,他引:12  
A short summary of the results of radiobiological studies in space or on respective particles on ground will be given. Among the various types of radiation in space, the effect of heavy ions with high energy (HZE-particles) are most essential. Thus, radiobiology in space concerns mostly to the effect of these particles, in cells and in whole organism. Cell death, mutation and malignant transformation are the relevant endpoints, with can be studied on ground with heavy ions of different energy with suitable accelerators or in space, especially by the BIOSTACK concept. In space, however, the effect of microgravity has to be considered as well and there are hints, that under weightlessness the biological effect of radiation may be enhanced. There are still open questions to be answered concerning radioprotection of man in space. Further experiments are necessary.  相似文献   

13.
Genomic instability induced by high and low LET ionizing radiation.   总被引:9,自引:0,他引:9  
Genomic instability is the increased rate of acquisition of alterations in the mammalian genome, and includes such diverse biological endpoints as chromosomal destabilization, aneuploidy, micronucleus formation, sister chromatid exchange, gene mutation and amplification, variations in colony size, reduced plating efficiency, and cellular transformation. Because these multiple endpoints persist long after initial radiation exposure, genomic instability has been proposed to operate as a driving force contributing to genetic plasticity and carcinogenic potential. Many of these radiation-induced endpoints depend qualitatively and quantitatively on genetic background, dose and LET. Differences in the frequency and temporal expression of chromosomal instability depend on all three of the foregoing factors. On the other hand, many of these endpoints appear independent of dose and show bystander effects, implicating non-nuclear targets and epigenetic regulatory mechanisms. The present work will survey results concerning the LET dependence of genomic instability and the role of epigenetic mechanisms, with a particular emphasis on the endpoint of chromosomal instability.  相似文献   

14.
On exploratory class missions astronauts will be exposed to a variety of heavy particles (HZE particles) which differ in terms of particle energy and particle linear energy transfer. The present experiments were designed to evaluate how these physical characteristics of different particles affect cognitive performance, specifically operant responding. Following exposure to 28Si, 48Ti, 12C and 16O particles at the NASA Space Radiation Laboratory rats were tested for their ability to respond appropriately to changes in reinforcement schedules using an operant task. The results showed that the effectiveness of different particles in disrupting cognitive performance, defined as the lowest dose that produced a performance decrement, varied as a function of the energy of the specific particle: for comparisons between different energies of the same particle (e.g., 56Fe) the effectiveness of the particle was directly proportional to particle linear energy transfer, whereas for comparisons between different particles (e.g., 56Fe and 16O) effectiveness was inversely proportional to particle linear energy transfer. The results are discussed in terms of the mechanisms that influence the effectiveness of different particles and energies and in terms of their implications for analyzing the possible risks to astronauts of decrements in cognitive performance following exposure to HZE particles on long-duration exploratory class missions.  相似文献   

15.
On long-duration missions to other planets astronauts will be exposed to types and doses of radiation that are not experienced in low earth orbit. Previous research using a ground-based model for exposure to cosmic rays has shown that exposure to heavy particles, such as 56Fe, disrupts spatial learning and memory measured using the Morris water maze. Maintaining rats on diets containing antioxidant phytochemicals for 2 weeks prior to irradiation ameliorated this deficit. The present experiments were designed to determine: (1) the generality of the particle-induced disruption of memory by examining the effects of exposure to 56Fe particles on object recognition memory; and (2) whether maintaining rats on these antioxidant diets for 2 weeks prior to irradiation would also ameliorate any potential deficit. The results showed that exposure to low doses of 56Fe particles does disrupt recognition memory and that maintaining rats on antioxidant diets containing blueberry and strawberry extract for only 2 weeks was effective in ameliorating the disruptive effects of irradiation. The results are discussed in terms of the mechanisms by which exposure to these particles may produce effects on neurocognitive performance.  相似文献   

16.
Energetic heavy ions are present in galactic cosmic rays and solar particle events. One of the most important late effects in risk assessment is carcinogenesis. We have studied the carcinogenic effects of heavy ions at the cellular and molecular levels and have obtained quantitative data on dose-response curves and on the repair of oncogenic lesions for heavy particles with various charges and energies. Studies with repair inhibitors and restriction endonucleases indicated that for oncogenic transformation DNA is the primary target. Results from heavy ion experiments showed that the cross section increased with LET and reached a maximum value of about 0.02 micrometer2 at about 500 keV/micrometer. This limited size of cross section suggests that only a fraction of cellular genomic DNA is important in radiogenic transformation. Free radical scavengers, such as DMSO, do not give any effect on induction of oncogenic transformation by 600 MeV/u iron particles, suggesting most oncogenic damage induced by high-LET heavy ions is through direct action. Repair studies with stationary phase cells showed that the amount of reparable oncogenic lesions decreased with an increase of LET and that heavy ions with LET greater than 200 keV/micrometer produced only irreparable oncogenic damage. An enhancement effect for oncogenic transformation was observed in cells irradiated by low-dose-rate argon ions (400 MeV/u; 120 keV/micrometer). Chromosomal aberrations, such as translocation and deletion, but not sister chromatid exchange, are essential for heavy-ion-induced oncogenic transformation. The basic mechanism(s) of misrepair of DNA damage, which form oncogenic lesions, is unknown.  相似文献   

17.
The purpose of this paper is to review the potential functional and morphological effects of long duration space flight on the human central nervous system (CNS) and how current neuroimaging techniques may be utilized to study these effects. It must be determined if there will be any detrimental changes to the CNS from long term exposure to the space environment if human beings are to plan interplanetary missions or establish permanent space habitats. Research to date has focused primarily on the short term changes in the CNS as the result of space flight. The space environment has many factors such as weightlessness, electromagnetic fields, and radiation, that may impact upon the function and structure of the CNS. CNS changes known to occur during and after long term space flight include neurovestibular disturbances, cephalic fluid shifts, alterations in sensory perception, changes in proprioception, psychological disturbances, and cognitive changes. Animal studies have shown altered plasticity of the neural cytoarchitecture, decreased neuronal metabolism in the hypothalamus, and changes in neurotransmitter concentrations. Recent progress in the ability to study brain morphology, cerebral metabolism, and neurochemistry in vivo in the human brain would provide ample opportunity to investigate many of the changes that occur in the CNS as a result of space flight. These methods include positron emission tomography (PET), single photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI).  相似文献   

18.
A broad spectrum of particles and energies has been used in the last years to study the influence of the radiation quality i.e. of the physical parameters of the particle beam on the biological effectiveness ?2?12?. In these measurements a common structure of the functional dependence of the induction probability per particle (cross section) from the linear energy transfer is observed for different biological endpoints. Because of the relevance for space research, we present in this report our data from experiments with iron and nickel particles, in particular. Our experiments were designed to investigate the relationship between the inactivation and chromosome aberration in mammalian cells and the induction of single and double strand breaks in SV40 DNA in respect to the parameters of the track formation like LET and particle energy.  相似文献   

19.
The primary structural and functional arrangement of the different cell types within the CNS are reviewed. This was undertaken with a view to providing a better understanding of the complex interrelationships that may contribute to the pathogenesis of lesions in this tissue after exposure to ionizing radiation. The spectrum of possible CNS radiation-induced syndromes are discussed although not all have an immediate relevance to exposure during space flight. The specific characteristics of the lesions observed would appear to be dose related. Very high doses may produce an acute CNS syndrome that can cause death. Of the delayed lesions, selective coagulation necrosis of white matter and a later appearing vascular microangiopathy, have been reported in patients after cancer therapy doses. Lower doses, perhaps very low doses, may produce a delayed generalised CNS atrophy; this effect and the probability of the induction of CNS tumors could potentially have the greatest significance for space flight.  相似文献   

20.
Heavy ions are more efficient in producing complex-type chromosome exchanges than sparsely ionizing radiation, and this can potentially be used as a biomarker of radiation quality. We measured the induction of complex-type chromosomal aberrations in human peripheral blood lymphocytes exposed in vitro to accelerated H-, He-, C-, Ar-, Fe- and Au-ions in the LET range of approximately 0.4-1400 keV/micrometers. Chromosomes were analyzed either at the first post-irradiation mitosis, or in interphase, following premature condensation by phosphatase inhibitors. Selected chromosomes were then visualized after FISH-painting. The dose-response curve for the induction of complex-type exchanges by heavy ions was linear in the dose-range 0.2-1.5 Gy, while gamma-rays did not produce a significant increase in the yield of complex rearrangements in this dose range. The yield of complex aberrations after 1 Gy of heavy ions increased up to an LET around 100 keV/micrometers, and then declined at higher LET values. When mitotic cells were analyzed, the frequency of complex rearrangements after 1 Gy was about 10 times higher for Ar- or Fe- ions (the most effective ions, with LET around 100 keV/micrometers) than for 250 MeV protons, and values were about 35 times higher in prematurely condensed chromosomes. These results suggest that complex rearrangements may be detected in astronauts' blood lymphocytes after long-term space flight, because crews are exposed to HZE particles from galactic cosmic radiation. However, in a cytogenetic study of ten astronauts after long-term missions on the Mir or International Space Station, we found a very low frequency of complex rearrangements, and a significant post-flight increase was detected in only one out of the ten crewmembers. It appears that the use of complex-type exchanges as biomarker of radiation quality in vivo after low-dose chronic exposure in mixed radiation fields is hampered by statistical uncertainties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号