共查询到16条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
航空发动机双重传感器故障诊断逻辑研究 总被引:1,自引:1,他引:1
针对航空发动机控制系统的双重传感器故障,提出了一种采用双路容错设计的卡尔曼滤波器故障检测隔离系统.故障检测隔离系统由一系列卡尔曼滤波器组成,每个滤波器都假定2路传感器故障,而以故障支路外的测量值作为输入量.当双重传感器故障发生时,只有不包含故障传感器信息的滤波器保持较低的估计残差,其他滤波器都会产生较大的估计残差,如此双重传感器故障便可以被隔离.利用滤波器组估计残差的特征,进一步设计合理的运算逻辑,系统就可以同时对传感器单一故障进行检测和隔离.为了验证故障诊断系统的有效性,在发动机慢车状态分别对传感器发生双重故障和单一故障的情况进行仿真.仿真结果表明:故障诊断系统能够准确有效地对传感器双重故障和单一故障进行检测和隔离. 相似文献
5.
航空发动机故障诊断的机载自适应模型 总被引:3,自引:3,他引:3
提出了复合拟合法建立状态变量模型,该方法应用于建立高维状态变量模型时,具有较高的精度.将健康参数作为增广的状态变量,设计了卡尔曼滤波器,从而可以根据可测参数的偏离量估计得到健康参数.为了减少自适应模型与真实发动机之间的建模误差,在自适应模型中加入神经网络对稳态基点模型进行修正,从而提高了故障诊断系统的置信度. 相似文献
6.
基于知识规则的发动机磨损故障诊断专家系统 总被引:7,自引:1,他引:7
针对某型发动机试车状态的磨损故障诊断问题,运用了两种最常用的滑油分析技术——铁谱分析和光谱分析,同时结合发动机试车台监测数据,对该型发动机试车过程中的磨损故障进行专家诊断。首先依据领域专家的经验,通过分析得到了各种分析方法的诊断专家知识,并将其转换为基于if-then的知识规则存放于知识库中;其次,依据各种分析方法的标准磨损界限值,将原始数据进行了预处理,统一转换成故障征兆的字符表达式;最后,根据应用正向推理机得到磨损故障的诊断结果。 相似文献
7.
航空发动机气路故障诊断的平方根UKF方法研究 总被引:2,自引:9,他引:2
设计了适用于双轴涡扇发动机健康参数估计的平方根UKF滤波算法,解决了线性卡尔曼滤波器估计结果准确性依赖于线性模型精度;常规UKF算法中由于计算误差及噪声信号影响引起误差协方差矩阵负定而导致滤波结果发散等问题.提出了根据测量残差变化改进滤波收敛速度与稳定性的方法.发动机渐变与突变故障模式下仿真结果表明,平方根UKF估计算法收敛速度快,稳定性强,精度高,是一种有效的发动机气路部件健康参数估计与故障诊断方法. 相似文献
8.
基于支持向量机的航空发动机故障诊断 总被引:18,自引:6,他引:18
支持向量机是一种具有完备统计学习理论基础和出色学习性能的新型机器学习方法,它能够较好地克服神经网络容易出现的过学习和泛化能力低等缺陷。提出一种基于支持向量机的航空发动机故障诊断方法,应用该方法成功地对发动机气路部件的几种典型故障进行了正确诊断。在对检验样本施加噪声后,支持向量机构成的故障分类器仍然能够满足发动机故障诊断的要求,表明提出的故障诊断算法具有良好的鲁棒性,可以作为工程应用的基础。 相似文献
9.
基于几何模式识别的发动机传感器故障诊断 总被引:4,自引:0,他引:4
提出一种基于几何模式识别技术的发动机传感器故障诊断方法,以解决传感器缓慢漂移故障和由于安装制造差异和性能蜕化等造成的模型不匹配难以区分的问题。传感器测量值输入到自适应模型中,产生一组部件性能修正因子,作为故障模式来对传感器故障进行诊断,每种故障或性能蜕化都对应惟一的模式,采用几何模式识别技术隔离出传感器故障。以某型涡扇发动机为对象进行的仿真结果表明,该方法能诊断出传感器小漂移故障,并能对部件状态进行监控。 相似文献
10.
传感器故障下的航空发动机机载自适应模型重构 总被引:2,自引:3,他引:2
利用航空发动机测量参数偏离正常工作情况下的变化量,可以估计发动机的非额定工作状况,并以此对机载模型进行校正,使其与真实发动机工作状况保持一致。建立了包含发动机性能蜕化因素的状态变量模型并对其进行了增广,设计了卡尔曼滤波器,根据可测输出偏离量对发动机性能蜕化值进行了估计,并将性能蜕化值用于修正发动机不可测输出参数。考虑了当某一传感器发生故障后,利用一簇卡尔曼滤波器对发生故障的传感器进行诊断并隔离,并依据剩余非故障传感器的信息对自适应模型进行重构。仿真结果表明,重构的自适应模型能够满足精度及实时性要求。 相似文献
11.
基于健康蜕化的航空发动机传感器故障诊断(英文) 总被引:3,自引:1,他引:2
改进在线故障诊断算法使其能适应发动机健康蜕化是目前故障诊断所面临的困难,如果诊断算法没有自适应能力,在发动机健康蜕化后将失去其诊断功能。为了解决此问题,提出在线故障诊断算法,采用跟踪滤波器估计发动机的健康状况,机载模型根据跟踪滤波器的估计结果进行更新。更新后的机载模型能够与真实的发动机相匹配。这使得当发动机健康蜕化后在线故障诊断仍能保持其有效性。最后采用一组卡尔曼滤波器来对航空发动机传感器故障进行诊断与隔离。通过设计好的一组卡尔曼滤波器,能够诊断并隔离出故障。本文使用非线性发动机模型来验证此方法,仿真结果表明本文提出的在线诊断方法在发动机健康蜕化后仍能保持其有效性。 相似文献
12.
13.
基于自适应粒子滤波的涡扇发动机故障诊断 总被引:3,自引:1,他引:3
针对涡扇发动机非线性、非高斯的特点,提出了一种自适应的粒子滤波算法用于涡扇发动机气路部件突变故障的诊断.为了减小算法的计算量并且保证滤波精度,分析了滤波精度和样本数目的关系,提出根据滤波过程中状态的方差自适应地调整粒子数,在保证一定的滤波精度下可以有效地减少滤波过程中使用的粒子数,提高了算法的实时性.同时,引入扩展卡尔曼滤波(EKF)用于更新粒子,产生重要概率密度函数,在一定程度上避免了粒子的退化.通过某型涡扇发动机的仿真分析表明:改进的算法相比标准粒子滤波算法用于涡扇发动机气路部件故障诊断时,参数估计的方均根误差减小了50%左右,且算法的计算量减小了30%. 相似文献
14.
15.