首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Recent models for the origin of Jupiter indicate that the Galilean satellites were mostly derived from largely unprocessed solar nebula solids and planetesimals. In the jovian subnebula the solids that built Europa were first heated and then cooled, but the major effect was most likely partial or total devolatilization, and less likely to have been wholesale thermochemical reprocessing of rock + metal compositions (e.g., oxidation of Fe and hydration of silicates). Ocean formation and substantial alteration of interior rock by accreted water and ice would occur during and after accretion, but none of the formation models predicts or implies accretion of sulfates. Europa's primordial ocean was most likely sulfidic. After accretion and later radiogenic and tidal heating, the primordial ocean would have interacted hydrothermally with subjacent rock. It has been hypothesized that sulfides could be converted to sulfates if sufficient hydrogen was lost to space, but pressure effects and the impermeability of serpentinite imply that extraction of sulfate from thoroughly altered Europa-rock would have been inefficient (if indeed Mg sulfates formed at all). Permissive physical limits on the extent of alteration limit the sulfate concentration of Europa's evolved ocean to 10% by weight MgSO(4) or equivalent. Later oxidation of the deep interior of Europa may have also occurred because of water released by the breakdown of hydrated silicates, ultimately yielding S magma and/or SO(2) gas. Geological and astrobiological implications are considered.  相似文献   

2.
The putative ocean of Europa has focused considerable attention on the potential habitats for life on Europa. By generally clement Earth standards, these Europan habitats are likely to be extreme environments. The objectives of this paper were to examine: (1) the limits for biological activity on Earth with respect to temperature, salinity, acidity, desiccation, radiation, pressure, and time; (2) potential habitats for life on Europa; and (3) Earth analogues and their limitations for Europa. Based on empirical evidence, the limits for biological activity on Earth are: (1) the temperature range is from 253 to 394 K; (2) the salinity range is a(H2O) = 0.6-1.0; (3) the desiccation range is from 60% to 100% relative humidity; (4) the acidity range is from pH 0 to 13; (5) microbes such as Deinococcus are roughly 4,000 times more resistant to ionizing radiation than humans; (6) the range for hydrostatic pressure is from 0 to 1,100 bars; and (7) the maximum time for organisms to survive in the dormant state may be as long as 250 million years. The potential habitats for life on Europa are the ice layer, the brine ocean, and the seafloor environment. The dual stresses of lethal radiation and low temperatures on or near the icy surface of Europa preclude the possibility of biological activity anywhere near the surface. Only at the base of the ice layer could one expect to find the suitable temperatures and liquid water that are necessary for life. An ice layer turnover time of 10 million years is probably rapid enough for preserving in the surface ice layers dormant life forms originating from the ocean. Model simulations demonstrate that hypothetical oceans could exist on Europa that are too cold for biological activity (T < 253 K). These simulations also demonstrate that salinities are high, which would restrict life to extreme halophiles. An acidic ocean (if present) could also potentially limit life. Pressure, per se, is unlikely to directly limit life on Europa. But indirectly, pressure plays an important role in controlling the chemical environments for life. Deep ocean basins such as the Mariana Trench are good analogues for the cold, high-pressure ocean of Europa. Many of the best terrestrial analogues for potential Europan habitats are in the Arctic and Antarctica. The six factors likely to be most important in defining the environments for life on Europa and the focus for future work are liquid water, energy, nutrients, low temperatures, salinity, and high pressures.  相似文献   

3.
While Europa has emerged as a leading candidate for harboring extraterrestrial life, the apparent lack of a source of free energy for sustaining living systems has been argued. In this theoretical analysis, we have quantified the amount of energy that could in principle be obtained from chemical cycling, heat, osmotic gradients, kinetic motion, magnetic fields, and gravity in Europa's subsurface ocean. Using reasonable assumptions based on known organisms on Earth, our calculations suggest that chemical oxidation-reduction cycles in Europa's subsurface ocean could support life. Osmotic and thermal gradients, as well as the kinetic energy of convection currents, also represent plausible alternative sources of energy for living systems at Europa. Organisms thriving on these gradients could interact with each other to form the complex energy cycling necessary for establishing a stable ecosystem.  相似文献   

4.
The surface expressions of hydrothermal systems are prime targets for astrobiological exploration, and fossil systems on Earth provide an analogue to guide this endeavor. The Paleozoic Mt. Gee-Mt. Painter system (MGPS) in the Northern Flinders Ranges of South Australia is exceptionally well preserved and displays both a subsurface quartz sinter (boiling horizon) and remnants of aerial sinter pools that lie in near-original position. The energy source for the MGPS is not related to volcanism but to radiogenic heat produced by U-Th-K-rich host rocks. This radiogenic heat source drove hydrothermal circulation over a long period of time (hundreds of millions of years, from Permian to present), with peaks in hydrothermal activity during periods of uplift and high water supply. This process is reflected by ongoing hot spring activity along a nearby fault. The exceptional preservation of the MGPS resulted from the lack of proximal volcanism, coupled with tectonics driven by an oscillating far-field stress that resulted in episodic basement uplift. Hydrothermal activity caused the remobilization of U and rare earth elements (REE) in host rocks into (sub)economic concentrations. Radiogenic-heat-driven systems are attractive analogues for environments that can sustain life over geological times; the MGPS preserves evidence of episodic fluid flow for the past ~300 million years. During periods of reduced hydrothermal activity (e.g., limited water supply, quiet tectonics), radiolytic H(2) production has the potential to support an ecosystem indefinitely. Remote exploration for deposits similar to those at the MGPS systems can be achieved by combining hyperspectral and gamma-ray spectroscopy.  相似文献   

5.
Observational data of the Galileo mission testify that there is a possibility of existence of planetary waves in the ocean of Jupiter’s moon Europa. A model of rotating ocean is used for the analysis of dynamics of underlying wavy processes. The model uses geometrical stratification of the ocean’s icy surface into separate cells with a typical size of order of 100 km. These cells of hydrothermal nature contain liquid lenses, and the possibility of their origination was postulated and theoretically studied by P. Thomson and J. Delaney in 2001. Using the Bubnov-Galerkin method, the spectrum of natural vibrations of liquid (gyroscopic waves) in Thomson-Delaney cells was found taking into account the satellite’s rotation in a simple model of the icy crust. In order to study a possibility of resonance excitation of tidal oscillations of liquid in the cells, the dominant elements of this spectrum are compared to theoretical values of the frequencies of tide-generating forces associated with eccentricity of the orbit of the Jupiter’s moon Europa and with perturbations from other Galilean satellites of Jupiter. This allows one to discover a large number of resonances on dominant modes with periods of from 3.5 to 7 days in the Europa ocean regions, corresponding to latitudes from 30° to 70°.  相似文献   

6.
RD Lorenz 《Astrobiology》2012,12(8):799-802
Abstract Thermal drilling has been applied to studies of glaciers on Earth and proposed for study of the martian ice caps and the crust of Europa. Additionally, inadvertent thermal drilling by radioisotope sources released from the breakup of a space vehicle is of astrobiological concern in that this process may form a downward-propagating "warm little pond" that could convey terrestrial biota to a habitable environment. A simple analytic solution to the asymptotic slow-speed case of thermal drilling is noted and used to show that the high thermal conductivity of the low-temperature ice on Europa and Titan makes thermal drilling qualitatively more difficult than at Mars. It is shown that an isolated General Purpose Heat Source (GPHS) "brick" can drill effectively on Earth or Mars, whereas on Titan or Europa with ice at 100 K, the source would stall and become stuck in the ice with a surface temperature of <200 K. Key Words: Planetary protection-Planetary environments-Ice-Titan. Astrobiology 12, 799-802.  相似文献   

7.
研究发射轨道的外热流是进行火箭上面级和卫星热控设计的基础。文章给出了基于一组轨道和姿态参数的太阳矢量与地球矢量的计算方法。针对圆柱外形的上面级,分析了其发射轨道外热流的变化规律,利用该计算方法计算了太阳矢量,而太阳矢量在长时间滑行段相对固定,太阳矢量和受晒因子随发射时间而发生大幅度的变化,使得外热流工况变得非常复杂。通过对太阳定姿且绕箭体纵轴慢旋,可改善火箭上面级的飞行热环境,简化卫星和上面级的热控系统设计。  相似文献   

8.
A knowledge base for natural satellites of planets is created. On the basis of observations, new numerical models of motion are constructed for all 96 outer satellites of Jupiter, Saturn, Uranus, and Neptune. A special database is compiled from all available observational data for natural satellites of planets, as well as a bibliographical database and information system of physical and orbital parameters of planets and satellites. The tools for calculations of ephemerides of all natural satellites (except for the Moon) of planets are developed. They represent the final result of studies and actually incorporate the entire knowledge about dynamics of the satellites of planets. Also developed are special ephemerides in order to observe singular phenomena in the apparent motion of the satellites of planets. A computer environment and the Internet allowed us to concentrate all above-listed options in a single toolkit easily available to any user in the world.  相似文献   

9.
Europa Lander     
《Acta Astronautica》2003,52(2-6):253-258
A Europa Lander mission has been assigned high priority for the post-2005 time frame in NASA's Space Science Enterprise Strategic Plan. Europa is one of the most scientifically interesting objects in the solar system because of the strong possibility that a liquid water ocean exists underneath its ice-covered surface. The primary scientific goals of the proposed Europa Lander mission are to characterize the surface material from a recent outflow and look for evidence of pre-biotic and possibly biotic chemistry. The baseline mission concept involves landing a single spacecraft on the surface of Europa with the capability to acquire samples of material, perform detailed chemical analysis of the samples, and transmit the results to Earth. This paper provides a discussion of the benefits and status of the key spacecraft and instrument technologies needed to accomplish the science objectives. Also described are variations on the baseline concept including the addition of small auxiliary probes and an experimental ice penetration probe.  相似文献   

10.
Pasek MA  Greenberg R 《Astrobiology》2012,12(2):151-159
Oxidants are formed at the surface of Europa and may be delivered to the subsurface ocean, possibly in great quantities. Whether these substances would be available for biological metabolism is uncertain, because they may react with sulfides and other compounds to generate sulfuric and other acids. If this process has been active on Europa for much of its age, then not only would it rob the ocean of life-supporting oxidants but the subsurface ocean could have a pH of ~2.6, which is so acidic as to present an environmental challenge for life, unless organisms consume or sequester the oxidants fast enough to ameliorate the acidification.  相似文献   

11.
Dalton JB 《Astrobiology》2003,3(4):771-784
Remote sensing of the surface of Europa with near-infrared instruments has suggested the presence of hydrated materials, including sulfate salts. Attention has been focused on these salts for the information they might yield regarding the evolution of a putative interior ocean, and the evaluation of its astrobiological potential. These materials exhibit distinct infrared absorption features due to bound water. The interactions of this water with the host molecules lead to fine structure that can be used to discriminate among these materials on the basis of their spectral behavior. This fine structure is even more pronounced at the low temperatures prevalent on icy satellites. Examination of hydrated sulfate salt spectra measured under cryogenic temperature conditions provides realistic constraints for future remote-sensing missions to Europa. In particular, it suggests that a spectrometer system capable of 2-5 nm spectral resolution or better, with a spatial resolution approaching 100 m, would be able to differentiate among proposed hydrated surface materials, if present, and constrain their distributions across the surface. Such information would provide valuable insights into the evolutionary history of Europa.  相似文献   

12.
Recent discoveries about Europa--the probable existence of a sizeable ocean below its ice crust; the detection of hydrated sodium carbonates, among other salts; and the calculation of a net loss of sodium from the subsurface--suggest the existence of an alkaline ocean. Alkaline oceans (nicknamed "soda oceans" in analogy to terrestrial soda lakes) have been hypothesized also for early Earth and Mars on the basis of mass balance considerations involving total amounts of acids available for weathering and the composition of the early crust. Such an environment could be favorable to biogenesis since it may have provided for very low Ca2+ concentrations mandatory for the biochemical function of proteins. A rapid loss of CO2 from Europa's atmosphere may have led to freezing oceans. Alkaline brine bubbles embedded in ice in freezing and impact-thawing oceans could have provided a suitable environment for protocell formation and the large number of trials needed for biogenesis. Understanding these processes could be central to assessing the probability of life on Europa.  相似文献   

13.
Knacke RF 《Astrobiology》2003,3(3):531-541
We consider possibilities for the remote detection of microbial life on extrasolar planets. The Darwin/Terrestrial Planet Finder (TPF) telescope concepts for observations of terrestrial planets focus on indirect searches for life through the detection of atmospheric gases related to life processes. Direct detection of extraterrestrial life may also be possible through well-designed searches for microbial life forms. Satellites in Earth orbit routinely monitor colonies of terrestrial algae in oceans and lakes by analysis of reflected ocean light in the visible region of the spectrum. These remote sensing techniques suggest strategies for extrasolar searches for signatures of chlorophylls and related photosynthetic compounds associated with life. However, identification of such life-related compounds on extrasolar planets would require observations through strong, interfering absorptions and scattering radiances from the remote atmospheres and landmasses. Techniques for removal of interfering radiances have been extensively developed for remote sensing from Earth orbit. Comparable techniques would have to be developed for extrasolar planet observations also, but doing so would be challenging for a remote planet. Darwin/TPF coronagraph concepts operating in the visible seem to be best suited for searches for extrasolar microbial life forms with instruments that can be projected for the 2010-2020 decades, although resolution and signal-to-noise ratio constraints severely limit detection possibilities on terrestrial-type planets. The generation of telescopes with large apertures and extremely high spatial resolutions that will follow Darwin/TPF could offer striking possibilities for the direct detection of extrasolar microbial life.  相似文献   

14.
A possible mechanism (of parametric resonance type) of excitation of planetary gyroscopic waves in Thomson-Delaney cells of the ocean of Jovian moon Europa is considered. It is assumed that the basis of this mechanism is a variation of liquid depth in a cell caused by tidal oscillations under the action of gravitational perturbing influence of Galilean satellites of Jupiter. Such a model leads to a system of linear differential equations with periodic coefficients of the Hill’s type. Under some additional assumptions it changes over into a system of independent Mathieu equations. The regions of parametric resonance of this system are constructed.  相似文献   

15.
Hand KP  Carlson RW  Chyba CF 《Astrobiology》2007,7(6):1006-1022
Europa is a prime target for astrobiology. The presence of a global subsurface liquid water ocean and a composition likely to contain a suite of biogenic elements make it a compelling world in the search for a second origin of life. Critical to these factors, however, may be the availability of energy for biological processes on Europa. We have examined the production and availability of oxidants and carbon-containing reductants on Europa to better understand the habitability of the subsurface ocean. Data from the Galileo Near-Infrared Mapping Spectrometer were used to constrain the surface abundance of CO(2) to 0.036% by number relative to water. Laboratory results indicate that radiolytically processed CO(2)-rich ices yield CO and H(2)CO(3); the reductants H(2)CO, CH(3)OH, and CH(4) are at most minor species. We analyzed chemical sources and sinks and concluded that the radiolytically processed surface of Europa could serve to maintain an oxidized ocean even if the surface oxidants (O(2), H(2)O(2), CO(2), SO(2), and SO(4) (2)) are delivered only once every approximately 0.5 Gyr. If delivery periods are comparable to the observed surface age (30-70 Myr), then Europa's ocean could reach O(2) concentrations comparable to those found in terrestrial surface waters, even if approximately 10(9) moles yr(1) of hydrothermally delivered reductants consume most of the oxidant flux. Such an ocean would be energetically hospitable for terrestrial marine macrofauna. The availability of reductants could be the limiting factor for biologically useful chemical energy on Europa.  相似文献   

16.
Basaltic glasses (hyaloclastite) are a widespread habitat for life in volcanic environments, yet their interior physical conditions are poorly characterized. We investigated the characteristics of exposed weathered basaltic glass from a surface outcrop in Iceland, using microprobes capable of continuous sensing, to determine whether the physical conditions in the rock interior are hospitable to microbial life. The material provided thermal protection from freeze-thaw and rapid temperature fluctuations, similar to data reported for other rock types. Water activity experiments showed that at moisture contents less than 13% wet weight, the glass and its weathering product, palagonite, had a water activity below levels suitable for bacterial growth. In pore spaces, however, these higher moisture conditions might be maintained for many days after a precipitation event. Gas exchange between the rock interior and exterior was rapid (< 10 min) when the rocks were dry, but when saturated with water, equilibration took many hours. During this period, we demonstrated the potential for low oxygen conditions within the rock caused by respiratory stimulation of the heterotrophic community within. These conditions might exist within subglacial environments during the formation of the rocks or in micro-environments in the interior of exposed rocks. The experiments showed that microbial communities at the site studied here could potentially be active for 39% of the year, if the depth of the community within the outcrop maintains a balance between access to liquid water and adequate protection from freezing. In the absence of precipitation, the interior of weathered basaltic glass is an extreme and life-limiting environment for microorganisms on Earth and other planets.  相似文献   

17.
Dissolved H(2) concentrations up to the mM range and H(2) levels up to 9-58% by volume in the free gas phase are reported for groundwaters at sites in the Precambrian shields of Canada and Finland. Along with previously reported dissolved H(2) concentrations up to 7.4 mM for groundwaters from the Witwatersrand Basin, South Africa, these findings indicate that deep Precambrian Shield fracture waters contain some of the highest levels of dissolved H(2) ever reported and represent a potentially important energy-rich environment for subsurface microbial life. The delta (2)H isotope signatures of H(2) gas from Canada, Finland, and South Africa are consistent with a range of H(2)-producing water-rock reactions, depending on the geologic setting, which include both serpentinization and radiolysis. In Canada and Finland, several of the sites are in Archean greenstone belts characterized by ultramafic rocks that have under-gone serpentinization and may be ancient analogues for serpentinite-hosted gases recently reported at the Lost City Hydrothermal Field and other hydrothermal seafloor deposits. The hydrogeologically isolated nature of these fracture-controlled groundwater systems provides a mechanism whereby the products of water-rock interaction accumulate over geologic timescales, which produces correlations between high H(2) levels, abiogenic hydrocarbon signatures, and the high salinities and highly altered delta (18)O and delta (2)H values of these groundwaters. A conceptual model is presented that demonstrates how periodic opening of fractures and resultant mixing control the distribution and supply of H(2) and support a microbial community of H(2)-utilizing sulfate reducers and methanogens.  相似文献   

18.
Radiolysis of water may provide a continuous flux of an electron donor (molecular hydrogen) to subsurface microbial communities. We assessed the significance of this process in anoxic marine sediments by comparing calculated radiolytic H(2) production rates to estimates of net (organic-fueled) respiration at several Ocean Drilling Program (ODP) Leg 201 sites. Radiolytic H(2) yield calculations are based on abundances of radioactive elements (uranium, thorium, and potassium), porosity, grain density, and a model of water radiolysis. Net respiration estimates are based on fluxes of dissolved electron acceptors and their products. Comparison of radiolytic H(2) yields and respiration at multiple sites suggests that radiolysis gains importance as an electron donor source as net respiration and organic carbon content decrease. Our results suggest that radiolytic production of H(2) may fuel 10% of the metabolic respiration at the Leg 201 site where organic-fueled respiration is lowest (ODP Site 1231). In sediments with even lower rates of organic-fueled respiration, water radiolysis may be the principal source of electron donors. Marine sedimentary ecosystems may be useful models for non-photosynthetic ecosystems on early Earth and on other planets and moons, such as Mars and Europa.  相似文献   

19.
《Space Policy》2014,30(4):215-222
Although existing international instruments such as the Outer Space Treaty and Moon Agreement generally express sentiments for minimizing missions' extraterrestrial environmental impacts, they tend to be limited in scope, vague and generally unenforceable. There is no formal structure for assessing how and to what extent we affect those environments, no opportunity for public participation, no uniform protocol for documenting and registering the effects of our actions and no requirement to mitigate adverse impacts or take them into consideration in the decision-making process. Except for precautions limiting forward biological contamination and issues related to Earth satellites, environmental impact analysis, when done at all, remains focused on how missions affect the Earth and near-Earth environments, not how our actions affect the Moon, Mars, Europa, comets and other potential destinations. Extraterrestrial environmental impacts are potentially counterproductive to future space exploration, exploitation and scientific investigations. Clear, consistent and effective international protocols guiding a process for assessing such impacts are warranted. While instruments such as the US National Environmental Policy Act provide legally tested and efficient regulatory models that can guide impact assessment here on Earth, statutory legal frameworks may not work as well in the international environment of outer space. A proposal for industry-driven standards and an environmental code of conduct based, in part, on best management practices are offered for consideration.  相似文献   

20.
In the next few years, the number of catalogued exoplanets will be counted in the thousands. This will vastly expand the number of potentially habitable worlds and lead to a systematic assessment of their astrobiological potential. Here, we suggest a two-tiered classification scheme of exoplanet habitability. The first tier consists of an Earth Similarity Index (ESI), which allows worlds to be screened with regard to their similarity to Earth, the only known inhabited planet at this time. The ESI is based on data available or potentially available for most exoplanets such as mass, radius, and temperature. For the second tier of the classification scheme we propose a Planetary Habitability Index (PHI) based on the presence of a stable substrate, available energy, appropriate chemistry, and the potential for holding a liquid solvent. The PHI has been designed to minimize the biased search for life as we know it and to take into account life that might exist under more exotic conditions. As such, the PHI requires more detailed knowledge than is available for any exoplanet at this time. However, future missions such as the Terrestrial Planet Finder will collect this information and advance the PHI. Both indices are formulated in a way that enables their values to be updated as technology and our knowledge about habitable planets, moons, and life advances. Applying the proposed metrics to bodies within our Solar System for comparison reveals two planets in the Gliese 581 system, GJ 581 c and d, with an ESI comparable to that of Mars and a PHI between that of Europa and Enceladus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号