首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The method of Spherical Cap Harmonic Analysis (SCHA) /1/ has been applied /2/ to the critical frequency of the F2 layer (f0F2) for mapping and modelling it over Europe. The model was based on longitudinal expansion in Fourier series, and fractional Legendre colatitudinal functions over a spherical cap including Europe. Here a new and simpler technique, previously developed for the regional modelling of the geomagnetic field /3/, is introduced and described. The basic improvement of the new method, called Adjusted Spherical Harmonic Analysis (ASHA), implies the use of conventional Spherical Harmonic (SH) functions after the colatitude interval is adjusted to that of a hemisphere. Examples are shown dealing with the application of ASHA to retrospective mapping and modelling of the monthly medians of f0F2 over Europe.  相似文献   

2.
Research on empirical or physical models of ionospheric parameters is one of the important topics in the field of space weather and communication support services. To improve the accuracy of predicting the monthly median ionospheric propagating factor at 3000 km of the F2 layer (identified as M(3000)F2) for high frequency radio wave propagation, a model based on modified orthogonal temporal–spatial functions is proposed. The proposed model has three new characteristics: (1) The solar activity parameters of sunspot number and the 10.7-cm solar radio flux are together introduced into temporal reconstruction. (2) Both the geomagnetic dip and its modified value are chosen as features of the geographical spatial variation for spatial reconstruction. (3) A series of harmonic functions are used to represent the M(3000)F2, which reflects seasonal and solar cycle variations. The proposed model is established by combining nonlinear regression for three characteristics with harmonic analysis by using vertical sounding data over East Asia. Statistical results reveal that M(3000)F2 calculated by the proposed model is consistent with the trend of the monthly median observations. The proposed model is better than the International Reference Ionosphere (IRI) model by comparison between predictions and observations of six station, which illustrates that the proposed model outperforms the IRI model over East Asia. The proposed method can be further expanded for potentially providing more accurate predictions for other ionospheric parameters on the global scale.  相似文献   

3.
Calculated intensities of the Fe X-ray lines due to transitions 2p6 − 2p53d lines (near 15 Å) and 2p6 − 2p53s lines (near 17 Å) are compared with measured line intensities in solar and tokamak spectra. For the solar spectra, temperature Te is obtained from the ratio of the Fe 16.776 Å line to a nearby Fe line. We find excellent agreement for all the major Fe line features in the 15–17 Å region except the Fe 15.015 Å line, the observed flux of which is less than the theoretical by a factor f. We find that f strongly depends on the heliocentric angle θ of the emitting region, being smallest (0.2) when the region is nearest Sun centre, but nearly 1 near the limb. Attributing this to resonance scattering, we are able to deduce the path length and electron density from the observations. Possible application to stellar active regions is given.  相似文献   

4.
利用神经网络预报电离层f0F2   总被引:6,自引:3,他引:3  
由中国武汉电离层台站和澳大利亚Hobart台站的电离层F2层临界频率(f0F2)的资料,利用三层前向反馈神经网络(BP网络),提出一种提前24h预测f0F2的方法,该方法以前5天观测的f0F2数据拟合的5个系数以及太阳活动参数作为输入,以当天24 h的f0F2作为输出对网络进行训练,训练好的网络可以实现对f0F2提前24 h的预报.预测结果显示,利用神经网络预测的f0F2与实际观测结果变化趋势较一致,并且比IRI的计算结果更加准确.误差分析表明,在南半球Hobart(-42.9°,147.3°)台站比中国武汉站(30.4°,114.3°)的结果要好,在低年比高年要好,在冬夏季节比春秋季节稍好.本文说明利用神经网络对电离层参量进行预报是一种切实可行的方法.  相似文献   

5.
We use hourly monthly median values of propagation factor M(3000)F2 data observed at Ouagadougou Ionospheric Observatory (geographic12.4°N, 1.5°W; 5.9o dip), Burkina Faso (West Africa) during the years Januar1987–December1988 (average F10.7 < 130 × 10−22 W/m2/Hz, representative of low solar flux conditions) and for January 1989–December1990 (average F10.7 ? 130 × 10−22 W/m2/Hz, representative of high solar epoch) for magnetically quiet conditions to describe local time, seasonal and solar cycle variations of equatorial ionospheric propagation factor M(3000)F2 in the African region. We show that that seasonal trend between solar maximum and solar minimum curves display simple patterns for all seasons and exhibits reasonable disparity with root mean square error (RMSE) of about 0.31, 0.29 and 0.26 for December solstice, June solstice and equinox, respectively. Variability Σ defined by the percentage ratio of the absolute standard deviation to the mean indicates significant dissimilarity for the two solar flux levels. Solar maximum day (10–14 LT) and night (22–02 LT) values show considerable variations than the solar minimum day and night values. We compare our observations with those of the IRI 2007 to validate the prediction capacity of the empirical model. We find that the IRI model tends to underestimate and overestimate the observed values of M(3000)F2, in particular, during June solstice season. There are large discrepancies, mainly during high solar flux equinox and December solstice between dawn and local midnight. On the other hand, IRI provides a slightly better predictions for M(3000)F2 between 0900 and 1500 LT during equinox low and high solar activity and equinox high sunspot number. Our data are of great importance in the area of short-wave telecommunication and ionospheric modeling.  相似文献   

6.
We describe a Parameterized Regional Ionospheric Model (PARIM) to calculate the spatial and temporal variations of the ionospheric electron density/plasma frequency over the Brazilian sector. The ionospheric plasma frequency values as calculated from an enhanced Sheffield University Plasmasphere–Ionosphere Model (SUPIM) were used to construct the model. PARIM is a time-independent 3D regional model (altitude, longitude/local time, latitude) used to reproduce SUPIM plasma frequencies for geomagnetic quiet condition, for any day of the year and for low to moderately high solar activity. The procedure to obtain the modeled representation uses finite Fourier series so that all plasma frequency dependencies can be represented by Fourier coefficients. PARIM presents very good results, except for the F region peak height (hmF2) near the geomagnetic equator during times of occurrence of the F3 layer. The plasma frequency calculated by IRI from E region to bottomside of the F region present latitudinal discontinuities during morning and evening times for both solar minimum and solar maximum conditions. Both the results of PARIM and the IRI for the E region peak density show excellent agreement with the observational values obtained during the conjugate point equatorial experiment (COPEX) campaign. The IRI representations significantly underestimate the foF2 and hmF2 compared to the observational results over the COPEX sites, mainly during the evening–nighttime period.  相似文献   

7.
This work studies the sudden increases in total electron content of the ionosphere caused by the very intense solar flare on July 14, 2000. Total electron content (TEC) data observed from a Global Positioning System (GPS) network are used to calculate the flare-induced TEC increment, δTECf, and variation rate, dTECf/dt. It is found that both dTECf/dt and δTECf are closely related with the solar zenith angles. To explain the observation results, we derived a simple relationship between the partial derivative of the flare-induced TEC, ∂TECf/∂t, which is a good approximation for dTECf/dt, and the solar zenith angle χ, as well as the effective flare radiation flux If, according to the well-known Chapman theory of ionization. The derived formula predicted that ∂TECf/∂t is proportional to If and inverse proportional to Chapman function ch(χ). This theoretical prediction not only explains the correlation of dTECf/dt and δTECf with χ as shown in our TEC observation, but also gives a way to deduce If from TEC observation of GPS network. Thus, the present work shows that GPS observation is a powerful tool in the observation and investigation of solar flare effects on the ionosphere, i.e., the sudden ionospheric disturbances, which is a significant phenomenon of space weather.  相似文献   

8.
The unusually deep and extended solar minimum of cycle 23/24 made it very difficult to predict the solar indices 1 or 2 years into the future. Most of the predictions were proven wrong by the actual observed indices. IRI gets its solar, magnetic, and ionospheric indices from an indices file that is updated twice a year. In recent years, due to the unusual solar minimum, predictions had to be corrected downward with every new indices update. In this paper we analyse how much the uncertainties in the predictability of solar activity indices affect the IRI outcome and how the IRI values calculated with predicted and observed indices compared to the actual measurements. Monthly median values of F2 layer critical frequency (foF2) derived from the ionosonde measurements at the mid-latitude ionospheric station Juliusruh were compared with the International Reference Ionosphere (IRI-2007) model predictions. The analysis found that IRI provides reliable results that compare well with actual measurements, when the definite (observed and adjusted) indices of solar activity are used, while IRI values based on earlier predictions of these indices noticeably overestimated the measurements during the solar minimum. One of the principal objectives of this paper is to direct attention of IRI users to update their solar activity indices files regularly. Use of an older index file can lead to serious IRI overestimations of F-region electron density during the recent extended solar minimum.  相似文献   

9.
The problem of optimum solar proxy is important for long-term and/or climatological studies of ionospheric parameters. Here we focus on possibly different optimum solar proxies for different ionospheric parameters, as they are affected by partly different spectral ranges of solar ionizing radiation. We use yearly average values of foF2 and foE of four European stations with long (1976–2014) and high-quality data (Juliusruh, Pruhonice, Rome, Slough/Chilton), and the global total electron content (G-TEC). Four solar proxies are used: F10.7, Mg II, solar Lymna-alpha flux Fα and sunspot numbers. The most important finding is that the optimum solar proxies are different for different ionospheric parameters. The most suitable solar proxy for foF2 is found to be Mg II, whereas for foE F10.7 evidently outperforms Mg II. Fα and sunspot numbers perform slightly worse but none of four solar proxies performs poorly. F10.7 is favored for G-TEC, to some extent surprisingly, as previous results favored rather Mg II.  相似文献   

10.
太阳活动对电离层TEC变化影响分析ormalsize   总被引:1,自引:1,他引:0       下载免费PDF全文
为研究太阳活动对电离层TEC变化的影响,从整体到局部分析了2000—2016年的太阳黑子数、太阳射电流量F10.7指数日均值与电离层TEC的关系,并重点分析了2017年9月6日太阳爆发X9.3级特大耀斑前后15天太阳活动与电离层TEC变化的相关性.结果表明:由2000—2016年的数据整体看来,太阳黑子数、太阳F10.7指数、TEC两两之间具有很强的整体相关性,但局部相关性强弱不均;此次耀斑爆发前后太阳黑子数、太阳F10.7指数和TEC具有很强的正相关特性,太阳活动对TEC的影响时延约为2天;太阳活动对全球电离层TEC的影响不同步,从高纬至低纬约有1天的延迟,且对低纬度的影响远大于中高纬度.太阳活动是影响电离层TEC变化的主要原因,但局部也可能存在其他重要影响因素.   相似文献   

11.
冯桃君  于钱  张凯 《空间科学学报》2022,42(6):1100-1110
原子氧135.6 nm夜气辉主要由氧离子O+与电子的辐射复合反应生成,一些星载远紫外遥感观测任务证实135.6 nm夜气辉可用于反演电离层电子密度。针对远紫外临边遥感观测反演电离层电子密度,分析了135.6 nm夜气辉辐射强度与电子密度之间的非线型前向模型,基于离散反演理论设计了从夜间135.6 nm临边观测数据反演电子密度高度分布的反演算法,算法应用最大似然估计通过迭代求解电离层参数的最佳拟合值。通过仿真计算了TIMED卫星上全球紫外成像仪GUVI观测的反演结果,验证了本反演算法的可行性。对GUVI的实际观测数据进行反演,获得了电子密度高度分布。通过与GUVI数据的电离层参数对比分析得出,本文建立的反演模型使NmF2被高估,同时使hmF2被低估。对于不同的太阳活动强度,NmF2和 hmF2的系统误差分别在10%和5%以内,能较精确地获得电离层参数。精确获得电离层电子密度信息对于提高空间天气预报及电离层模型的修正具有重要意义。   相似文献   

12.
2009年7月22日日全食期间电离层参量的变化   总被引:1,自引:2,他引:1  
利用多个电离层垂测站的数据和IGS-TEC数据资料, 结合日地空间环境指数, 分析了2009年7月22日日全食期间中国地区电离层参量(反射回波最低频率fmin及f0F2和TEC)的变化特征. 结果表明, 日食发生后fmin迅速降低, 日食结束后fmin迅速恢复到正常水平; 在食甚时刻附近, f0F2和TEC出现明显的降低, 显示了明显的光食效应. 日食结束后5~6 h, f0F2和TEC出现不同程度的正扰动, 在驼峰区更明显; 日食结束后9~10 h, f0F2和TEC出现较显著的负扰动. 由于此次日食发生时伴随着中等强度的磁暴和低纬电场穿透等空间天气事件, 给此次日食电离层效应的深入分析带来很大困难.   相似文献   

13.
The purpose of this research work is to validate the ionospheric models (IRI and CHIU) to assess its suitability and usefulness as an operational tool. The ionospheric model is a computer model designed to predict the state of the global ionosphere for 24 h. The scope was limited to conduct comparisons between the predicted F2 layer critical frequencies (f0F2) against observed ionosonde data. The ionospheric prediction model (IPM) was designed to predict by using monthly median sunspot number, while the observation data are taken from two digital ionospheric sounding stations (Okinawa, 26.28N, 127.8E and Wakkanai, 45.38N, 141.66E) which lies within the mid-latitude region of the globe. Analysis of the f0F2 data from stations for year (2001) with high solar activity and year (2004) with low solar activity, four months (March, June, September and December) chosen based primarily on data availability. From results it seen that the ratio between monthly median predicted and observed f0F2 values for each model used in this research work and for the chosen months was nonlinear with local time, so the empirical formula for applying correction factors were determined, these formula can be used to correct the error occurred in predicted f0F2 value.  相似文献   

14.
通过对电离层历史数据和太阳射电流量F10.7的回归分析,提出了一种单站电离层f0F2的短期预报方法,以F10.7的流动平均值fc为输入,以未米3天的f0F2为输出,分别利用中国地区8个台站的数据进行检验,分析不同太阳活动水平、季节以及地方时预报误差的分布特征.结果表明,该方法能有效地预测未来1~3天的f0F2.该方法还可应用于其他电离层参量的短期预报.  相似文献   

15.
为能够在高纬区域获取高精度电离层参数特性结果,提出了基于地磁坐标的高纬度区域电离层F2层临界频率(f0F2)的重构方法.该方法确定了基于地磁坐标的变异函数,通过求解改进Kriging方程得出估计值.方法的确定取决于对2种坐标系、2类电离层距离计算方法以及尺度因子的选取.通过对俄罗斯6个垂直探测站在太阳活动高年(2013年)和低年(2017年)的f0F2历史观测数据使用月中值进行交叉验证,证明了引入地磁坐标和利用球面距离计算方法对高纬度地区进行重构能够达到最优效果.相比现有方法,其整体标准误差和绝对误差均有所降低.上述研究证实了该方法的有效性,对电子信息系统的可用频率预测以及通信效能保障具有重要意义.   相似文献   

16.
Studying the relationship of total electron content (TEC) to solar or geomagnetic activities at different solar activity stages can provide a reference for ionospheric modeling and prediction. On the basis of solar activity indices, geomagnetic activity parameters, and ionospheric TEC data at different solar activity stages, this study analyzes the overall variation relationships of solar and geomagnetic activities with ionospheric TEC, the characteristics of the quasi-27-day periodic oscillations of the three variables at different stages, and the delayed TEC response of solar activity by conducting correlation analysis, Butterworth band-pass filtering, Fourier transform, and time lag analysis. The following results are obtained. (1) TEC exhibits a significant linear relationship with solar activity at different solar activity stages. The correlation coefficients |R| are arranged as follows: |R|EUV > |R|F10.7 > |R|sunspot number. No significant linear relationship exists between TEC and geomagnetic activity parameters (|R| < 0.35). (2) TEC, solar activity indices, and geomagnetic activity parameters have a period of 10.5 years. The maximum amplitudes of the Fourier spectrum for TEC and solar activity indices are nearly 27 days and those of geomagnetic activity parameters are nearly 27 and 13.5 days. (3) The deviations of the quasi-27-day significant periodic oscillation of TEC and solar activity indices are consistent. (4) No evident relationship exists between the quasi-27-day periodic oscillation of TEC and geomagnetic activity parameters. (5) The delay time of TEC for the 10.7 cm solar radio flux and extreme ultraviolet is always consistent, whereas that for sunspot number varies at each stage.  相似文献   

17.
利用全球40余个电离层台站的f0F2观测数据,采取对经度进行分区处理的方法,通过计算各台站f0F2参数对其月中的偏离百分比,对1998年5月大磁爆期间的电离层扰动形态进行了分析,并对可能的扰动机制进行了探讨,结果表明本次磁暴事件中,在磁暴主要活动相期间的电离层扰动与暴环流理论所描述的电脑层扰动特征相符,但在恢复相后期欧洲扇区台站出现的正相扰动似不能用暴环流理论来解释,它可能对应期间的行星行条件(太阳风与行星际磁场)的变化有关。  相似文献   

18.
利用电波环境观测网曲靖站电离层垂直探测仪数据(2008-2018),分析了该站电离层多参数(包括fmin,f0Es,h'Es,f0E,f0F1,f0F2,h'F,MUF(3000)F2等)随太阳活动、季节、地方时的变化特征。结果表明,fmin,f0Es,h'Es随太阳活动变化不明显,f0E,f0F1,f0F2,h'F,MUF(3000)F2与太阳活动变化具有相关性,f0F2经常发生日落增强现象,同时各自具有独立性;与拉萨、乌鲁木齐地区f0F2,h'F,f0Es变化特征对比,发现地方时与月份变化趋势相同,但是极值出现的位置有所不同,这可能与各地区的地理纬度和地形等因素有关;h'F夜间大于白天,在日出日落时段有突然上升现象,冬季的h'F一般都小于其他季节;MUF(3000)F2与f0F2的变化特征相似,白天值高于夜晚值,春秋分季高于夏冬季,太阳活动高年日落后MUF(3000)F2一直维持较高值并持续到03:00-04:00 LT。   相似文献   

19.
The occurrence frequencies or fluxes of most of the solar phenomena show a 11-year cycle like that of sunspots. However, the average characteristics of these phenomena may not show a 11-year cycle. Among the terrestrial parameters, some related directly to the occurrence frequencies of solar phenomena (for example, ionospheric number densities related to solar EUV fluxes which show 11-year cycle like sunspots) show 11-year cycles, including the double-peak structures near sunspot maxima. Other terrestrial parameters related to average characteristics may not show 11-year sunspot cycles. For example, long-term geomagnetic activity (Ap or Dst indices) is related to the average interplanetary solar wind speed V and the total magnetic field B. The average values of V depend not on the occurrence frequency of ICMEs and/or CIRs as such, but on the relative proportion of slow and high-speed events in them. Hence, V values (and Ap values) in any year could be low, normal or high irrespective of the phase of the 11-year cycle, except that during sunspot minimum, V (and Ap) values are also low. However, 2–3 years after the solar minimum (well before sunspot maximum), V values increase, oscillate near a high level for several years, and may even increase further during the declining phase of sunspot activity, due to increased influence of high-speed CIRs (corotating interplanetary regions). Thus, Ap would have no fixed relationship with sunspot activity. If some terrestrial parameter shows a 11-year cycle, chances are that the solar connection is through the occurrence frequencies (and not average characteristics) of some solar parameter.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号