首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
We report the discovery of two hot white dwarfs which have the lowest line-of-sight neutral hydrogen column densities yet measured. The stars were found independently by the ROSAT EUV, Montreal-Cambridge-Tololo, and Edinburgh-Cape surveys. Follow-up observations made using the Voyager 2 ultraviolet spectrometer reveal strong continua shortward of the 912Å Lyman limit from which we deduce that the neutral hydrogen column densities are 1.3 × 1017 and 2.0 × 1017 atoms cm−2.  相似文献   

2.
Calculated intensities of the Fe X-ray lines due to transitions 2p6 − 2p53d lines (near 15 Å) and 2p6 − 2p53s lines (near 17 Å) are compared with measured line intensities in solar and tokamak spectra. For the solar spectra, temperature Te is obtained from the ratio of the Fe 16.776 Å line to a nearby Fe line. We find excellent agreement for all the major Fe line features in the 15–17 Å region except the Fe 15.015 Å line, the observed flux of which is less than the theoretical by a factor f. We find that f strongly depends on the heliocentric angle θ of the emitting region, being smallest (0.2) when the region is nearest Sun centre, but nearly 1 near the limb. Attributing this to resonance scattering, we are able to deduce the path length and electron density from the observations. Possible application to stellar active regions is given.  相似文献   

3.
We report the first detection of Lyman continuum (≈ 600Å) emission from a non-degenerate star. The WFC on-board ROSAT detected emission from β CMa (B1 II–III) which has a very low interstellar column. Both Kurucz LTE line-blanketed and Mihalas NLTE un-blanketed model atmospheres can match the observed count rate within the very considerable absolute calibration errors. We also find very marginal evidence for variability, although not at the dominant period of the known optical pulsations.  相似文献   

4.
We present early results from the Far Ultraviolet Space Telescope (FAUST), which flew in March 1992 with the ATLAS space shuttle mission. The telescope provides wide-field images in the far ultraviolet (1400–1800 Å). Studies underway using the data obtained on this mission include establishing the brightness and distribution of far ultraviolet stars in the halo of our Galaxy, establishing the far ultraviolet properties of nearby galaxies and nearby clusters of galaxies, analyzing the diffuse galactic light, and searching for the origin of the extragalactic ultraviolet light. We discuss the instrument performance, and early results from these observations.  相似文献   

5.
SPIRIT (SPectroheliograph Ic soft X-Ray Imaging Telescope) is the current experiment on board theCORONAS-F satellite launched on July 31, 2001 (Oraevskii & Sobelman, 2002). The main goal of this experiment is to study a structure and dynamics of the solar atmosphere in the wide scale of heights (from the chromosphere to a far corona) and of temperatures (from ten thousands through thirty millions Kelvins) by means of the XUV imaging spectroscopy. Since the launch of the CORONAS-F satellite more than three hundred thousands of images and spectroheliograms have been recorded. For the first time continuous series of monochromatic full Sun images in MgXII lines at 8.42 Å (doublet: 8.418 and 8.423 Å) were obtained. These series include long-term continuous observations of duration up to 10 days with the cadence of 100 sec as well as temporal sequences with duration of a few minutes and high resolution of 7 sec, synchronized with flares. The spectroheliograms for the whole disk and off-limb regions are also recorded in the spectral bands 177 – 207 and 285 – 335 Å providing spectra with high resolution of various coronal structures including eruptive and transient events. This paper presents preliminary results of quick look analysis of some observational data obtained by means of the SPIRIT spectroheliographs.  相似文献   

6.
We present here the first results obtained by the Ultraviolet Coronagraph Spectrometer (UVCS) operating on board the SOHO satellite. The UVCS started to observe the extended corona at the end of January 1996; it routinely obtains coronal spectra in the 1145 Å – 1287 Å, 984 Å – 1080 Å ranges, and intensity data in the visible continuum. Through the composition of slit images it also produces monocromatic images of the extended corona. The performance of the instrument is excellent and the data obtained up to now are of great interest. We briefly describe preliminary results concerning polar coronal holes, streamers and a coronal mass ejection, in particular: the very large r.m.s. velocities of ions in polar holes (hundreds km/sec for OVI and MgX); the puzzling difference between the HI Ly- image and that in the OVI resonance doublet, for most streamers; the different signatures of the core and external layers of the streamers in the width of the ion lines and in the OVI doublet ratio, indicating larger line-of-sight (l.o.s.) and outflow velocities in the latter.  相似文献   

7.
The SOHO (SOlar and Heliospheric Observatory) satellite was launched on December 2nd 1995. After arriving at the Earth-Sun (L1) Lagrangian point on February 14th 1996, it began to continuously observe the Sun. As one of the instruments onboard SOHO, the EIT (Extreme ultraviolet Imaging Telescope) images the Sun's corona in 4 EUV wavelengths. The He II filter at 304 Å images the chromosphere and the base of the transition region at a temperature of 5 − 8 × 104 K; the Fe IX–X filter at 171 Å images the corona at a temperature of 1.3 × 106 K; the Fe XII filter at 195 Å images the quiet corona outside coronal holes at a temperature of 1.6 × 106 K; and the Fe XV filter at 284 Å images active regions with a temperature of 2.0 × 106 K. About 5000 images have been obtained up to the present. In this paper, we describe also some aspects of the telescope and the detector performance for application in the observations. Images and movies of all the wavelengths allow a look at different phenomena present in the Sun's corona, and in particular, magnetic field reconnection.  相似文献   

8.
We present first results from the Coronal Diagnostic Spectrometer (CDS) aboard the ESA/NASA Solar and Heliospheric Observatory (SOHO). CDS is a double spectrometer operating in the 151–785 Å range. This region of the solar spectrum is rich in emission lines from trace elements in the solar atmosphere, which can be used to derive diagnostic information on coronal and transition region plasmas. Early spectra are presented and well identified lines are listed. In addition, examples of images in selected wavelength ranges are shown, for a prominence, a loop system and a bright point, demonstrating well the power of such extreme ultraviolet observations.  相似文献   

9.
Long (>100 ks) observations of the bright Seyfert galaxies Mrk 766 and NGC 4051 have been obtained using XMM-Newton. The RGS 5–38 Å spectra reveal evidence of broad features. These can be modelled with relativistic emission lines coming from the immediate vicinity of a massive rotating black hole. Lines of OVIII, NVII and CVI are required to reproduce the spectrum of Mrk 766, whereas the spectrum of NGC 4051 can be modelled using a single, even broader OVIII line. Both Seyferts also exhibit broad iron line emission in the 2–8 keV range, and the data available thus far suggest that the strength of the low-energy emission lines and the strength of the iron line may be correlated.  相似文献   

10.
SMESE: A SMall Explorer for Solar Eruptions   总被引:1,自引:0,他引:1  
The SMall Explorer for Solar Eruptions (SMESE) mission is a microsatellite proposed by France and China. The payload of SMESE consists of three packages: LYOT (a Lyman imager and a Lyman coronagraph), DESIR (an Infra-Red Telescope working at 35–80 and 100–250 μm), and HEBS (a High-Energy Burst Spectrometer working in X- and γ-rays).

The status of research on flares and coronal mass ejections is briefly reviewed in the context of on-going missions such as SOHO, TRACE and RHESSI. The scientific objectives and the profile of the mission are described. With a launch around 2012–2013, SMESE will provide a unique tool for detecting and understanding eruptions (flares and coronal mass ejections) close to the maximum phase of activity.  相似文献   


11.
Current literature suggests that several lines in the soft X-ray portion of the coronal spectrum may not be optically thin. Here, we confirm the results of Schmelz et al. (1996) who find no significant opacity effects for three of the brightest non-iron resonance lines in this part of the spectrum — O VIII at 18.97Å, Ne IX at 13.45Å, and Mg XI at 9.17Å. A comparison is made between each of these lines and an optically thin “reference” line produced by the same element in the same ionization state — O VIII at 15.18Å, Ne IX at 13.55Å, and Mg XI at 9.23Å. In the latter two cases, the comparison line is the intersystem line of the He-like triplet. 33 spectra from the Solar Maximum Mission Flat Crystal Spectrometer are analyzed, all of which were obtained from non-flaring, quasi-stable active regions.  相似文献   

12.
UVSTAR is an EUV spectral imager intended as a facility instrument devoted to solar system astronomy and to astronomy. It covers the wavelength range of 500 to 1250 Å, with sufficient spectral resolution to separate atomic emission lines and to form spectrally resolved images of extended plasma sources. Targets include the Io plasma torus at Jupiter, hot stars, planetary nebulae and extragalactic sources. UVSTAR will make useful measurements of emissions from the Earth's atmosphere as well. UVSTAR consists of a pair of telescopes and concave-grating spectrographs that cover the overlapping spectral ranges of 500–900 Å and 850–1250 Å. The telescopes use two 30 cm diameter off-axis paraboloids having a focal length of 1.4 m. An image of the target is formed at the entrance slits of two concave grating spectrographs. The gratings provide dispersion and re-image the slits at the detectors, intensified CCDs. The readout format of the detectors can be chosen by computer, and three slit widths are selectable to adapt the instrument to specific tasks. The spectrograph package has internal gimbals which allow rotation of ±3° about each of two axes. Dedicated finding and tracking telescopes will acquire and track the target after rough pointing is achieved by orienting the Orbiter. Responsibilities for the implementation and utilization of UVSTAR are shared by groups the U.S. and Italy. UVSTAR is scheduled for flight in early 1994.  相似文献   

13.
The wide field (7.5°), arc minute imaging, and spectroscopic capabilities of the Far Ultraviolet FAUST telescope which will be flown on Spacelab I can provide valuable information on Comet Halley. The use of the FAUST instrument in obtaining images of the hydrogen coma at 1216 Å, and in obtaining objective grating spectroscopy from 1300–3300 Å of the comet and tail, are described. The FAUST images would provide large field of view data that are required for model calculations of gas production rates and the determination of scale lengths and lifetimes of ion species.  相似文献   

14.
An ultraviolet imaging spectrometer (UVS) has been developed for the PLANET-B spacecraft. The UVS instrument is composed of a grating spectrometer (UVS-G) and a D/H absorption cell photometer (UVS-P). The UVS-G is a flat-field type spectrometer measuring optical emissions in the FUV and MUV range between 115 nm and 310 nm with a spectral resolution of 2 – 3 nm. The UVS-P is a photometer detecting hydrogen (H) and deuterium (D) Lyman α emissions separately by an absorption cell technique. Scientific targets of the UVS experiment are the investigation of (1) hydrogen and oxygen coronas around Mars, (2) the D/H ratio in the upper atmosphere, (3) dayglow, (4) aurora and nightglow, (5) dust, clouds and ozone, and (6) the surface composition of Phobos and Deimos.  相似文献   

15.
The EXCEDE III sounding rocket flight of April 27, 1990 used a 18 Ampere 2.5 keV electron beam to produce an artificial aurora in the region 90 to 115 km. A “daughter” sensor payload remotely monitored the low-energy X-ray spectrum while scanning photometers measured the spatial profile of prompt emissions of N2+ (1N) and N2 (2P) transitions (3914Å and 3805Å, respectively). Two Ebert-Fastie spectrometers measured the spectral region from 1800 to 8000Å. On the “mother” accelerator payload, the return current electron differential energy spectra were monitored by an electrostatic analyzer (up to 10 keV) and by a retarding potential analyzer (0 eV to 100 eV). We present an overview of the results from this experiment.  相似文献   

16.
Two soft X-ray images of the Chamaeleon I star forming cloud obtained with the ROSAT Position Sensitive Proportional Counter are presented. Seventy reliable, and perhaps 19 additional, X-ray sources are found. Up to Ninety percent of these sources are certainly or probably identified with T Tauri stars formed in the cloud. Twenty to 35 are probably previously unrecognized ‘weak’ T Tauri (WTT) stars. T Tauri X-ray luminosities range from log , or 102 – 104 times solar levels, with mean in the 0.2–2.5 keV band. The X-ray luminosities of well-studied Chamaeleon cloud members are correlated with a complex of four stellar properties: effective temperature, mass, radius and bolometric luminosity. The spatial distribution, H-R diagram locations of the stars indicate WTT and CTT are coeval. The total premain sequence population of the cloud is likely to be > 100 stars, with WTT stars outnumbering ‘classical’ T Tauri (CTT) stars by 2:1.  相似文献   

17.
The main molecular processes to produce the hydrogen comae of comets are now well known: Water, the main constituent of cometary atmospheres, is photodissociated by the solar ultraviolet radiation to form the high (20 km s−1) and low (8 km s−1) velocity components of the atomic hydrogen. The hydrogen clouds of various fresh comets have been observed in 1216Å by a number of spacecrafts. Ultraviolet observations of short period comets are, however, rather rare. Consequently Comet P/Halley in this apparition is a good object to obtain new physics of the hydrogen coma. Strong breathing of the hydrogen coma of this comet found by “Suisei” provides just such an example. The rotational period of Comet Halley's nucleus, its activity in the form of outbursts alone, and the position of jet sources etc. are determined from the breathing phenomena. Atomic hydrogen from organic compounds with a velocity of 11 km s−1 play an important role in that analysis. The time variations of the water production rate of Comet Halley during this apparition observed by various spacecrafts appear to be in agreement with each other and are about 1.5–2 times larger than the standard model. The difficulty of the calibration problem was emphasized.  相似文献   

18.
We present preliminary results of a simultaneous X-ray/optical campaign of the prototypical LMXB Sco X-1 at 1–10 Hz time resolution. Lightcurves of the high excitation Bowen/HeII emission lines and a red continuum at λc  6000 Å were obtained through narrow interference filters with ULTRACAM, and these were cross-correlated with simultaneous RXTE X-ray lightcurves. We find evidence for correlated variability, in particular when Sco X-1 enters the Flaring branch. The Bowen/HeII lightcurves lag the X-ray lightcurves with a light travel time which is consistent with reprocessing in the companion star while the continuum lightcurves have shorter delays consistent with reprocessing in the accretion disc.  相似文献   

19.
A fundamental component of the Active Galactic Nuclei (AGN) paradigm is an accretion disk. However, the nature of this accretion disk is not well understood. In this paper I present the spectropolarimetric observations of active galactic nuclei (AGN) in the Lyman limit (912Å) region and discuss their implications in the context of accretion disks in AGN.  相似文献   

20.
In this study we explore physical scaling laws applied to solar nanoflares, microflares, and large flares, as well as to stellar giant flares. Solar flare phenomena exhibit a fractal volume scaling, V(L)  L1.9, with L being the flare loop length scale, which explains the observed correlation between the total emission measure EMp and flare peak temperature Tp in both solar and stellar flares. However, the detected stellar flares have higher emission measures EMp than solar flares at the same flare peak temperature Tp, which can be explained by a higher electron density that is caused by shorter heating scale height ratios sH/L ≈ 0.04–0.1. Using these scaling laws we calculate the total radiated flare energies EX and thermal flare energies ET and find that the total counts C are a good proxy for both parameters. Comparing the energies of solar and stellar flares we find that even the smallest observed stellar flares exceed the largest solar flares, and thus their observed frequency distributions are hypothetically affected by an upper cutoff caused by the maximum active region size limit. The powerlaw slopes fitted near the upper cutoff can then not reliably be extrapolated to the microflare regime to evaluate their contribution to coronal heating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号