首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results of almost two years (January 1999–October 2000) of continuous observations of auroral kilometric radio emission with the instrument AKR-X onboard the high-apogee satellite of the Earth Interball-1 are presented. The observations were conducted at the growth stage (in 1999) and in the maximum (2000) of solar activity within the 100–1500 kHz frequency band. The results of AKR detection in the vicinity of the maximum of its spectrum at a frequency of 252 kHz are presented. Both similarity (for example, the character of global directivity) and important differences from the AKR emission observed during the solar activity minimum [5] are found. Together with very high sporadicity, strong seasonal changes in the intensity are typical for the emission. It is completely absent in the spring-summer period in the Northern Hemisphere and is strongly suppressed in this period in the Southern Hemisphere. Probable nature of these features of AKR is discussed.  相似文献   

2.
The auroral kilometric radio emission (AKR) is the most powerful sporadic radio emission of the terrestrial magnetosphere. It was discovered in 1965 by Soviet scientists in the experiment onboard the Electron-2 satellite [1]. The AKR still continues to stay an object of a large interest and detailed study (see, for example, a review by Gurnett [2]). The mechanism of cyclotron maser instability proposed by Wu and Lee [3] is a commonly accepted mechanism of AKR generation. We have demonstrated the presence of powerful AKR simultaneously in both hemispheres of the Earth in the period from August 1995 to August 1997, including summer-winter periods, on particular examples of registration of this emission in [4] where the directivity and mechanism of the emission were studied. Since in that period AKR was observed in the vicinity of perigees of the satellite orbit in both hemispheres almost at every orbit (3.8 days), we have a possibility to trace in more detail the changes in the emission power from one orbit to another in 1996 during a deep minimum of solar activity.  相似文献   

3.
Long-wave radio bursts recorded on the Interball-1 satellite in the frequency band 100–1500 kHz are analyzed. The events distinguished by large amplitude radio emission fluxes were selected. These bursts were identified with powerful solar flares, during which time fluxes of hard X-ray radiation, meter-wave radio bursts (types II and IV), and coronal transients were observed. Temporal profiles of the bursts are characterized by a quick drift in frequency and are typical for bursts of III and SA types. The instant of long-wave radio burst generation seems to correspond to the expansion phase of a flare.  相似文献   

4.
We present the results of studying the magnetospheres’s response to sharp changes of the solar wind flow (pressure) based on observations of variations of the ions flux of the solar wind onboard the Inreball-1 satellite and of geomagnetic pulsations (the data of two mid-latitude observatories and one auroral observatory are used). It is demonstrated that, when changes of flow runs into the magnetosphere, in some cases short (duration ~ < 5 min) bursts of geomagnetic pulsations are excited in the frequency range Δf~ 0.2–5 Hz. The bursts of two types are observed: noise bursts without frequency changes and wide-band ones with changing frequency during the burst. A comparison is made of various properties of these bursts generated by pressure changes at constant velocity of the solar wind and by pressure changes on the fronts of interplanetary shock waves at different directions of the vertical component of the interplanetary magnetic field.  相似文献   

5.
The formation of an auroral bulge with a bright dynamical arc at its polar boundary is one of the main manifestations of the magnetospheric substorm expansion phase at the ionospheric level. At the same time, the region of discrete aurora broadens not only polewards but equatorwards as well. The discrete forms of auroras moving equatorwards form a dynamical equatorial boundary of the auroral bulge shifting together with them. The paper presents a spatial-time comparison of the drifting discrete auroras to the injection of energetic particles at the geostationary orbit. It is shown that bursts in the fluxes of energetic particles at the LANL geostationary satellites located in the same sector of MLT correspond to the majority of drifting discrete auroral structures observed by the all-sky camera. In the cases when the bursts in the fluxes are absent, the minimum latitude reached by the auroral structures at the equatorward drift is higher than the ionospheric projection of the geostationary orbit. A possible relation of the drifting discrete auroras to the plasma stream jets in the plasma sheet is discussed.  相似文献   

6.
The bursts of long-wave radio emission in the 100–1500 kHz frequency band detected onboard the INTERBALL-1 satellite during strong chromosphere solar flares in 2000 are analyzed. The bursts exhibit large amplitude and duration. A comparison of the bursts with phenomena in the optical, x-ray, and radio bands is carried out.  相似文献   

7.
Modulation of the VLF emission and riometric absorption by Pc5 geomagnetic pulsations is studied in the period of strong geomagnetic disturbances on October 30–31, 2003. Some conclusions about the regime of pitch-angular diffusion into the loss cone are made. The better coincidence of VLF emission modulation with geomagnetic pulsations in other longitude sectors is explained by the global character of excitation of the pulsations and by damping of their amplitudes at the meridian of observation of the VLF emission, which is associated with intensification of auroral electrojets.Translated from Kosmicheskie Issledovaniya, Vol. 42, No. 6, 2004, pp. 632–639.Original Russian Text Copyright © 2004 by Solovyev, Mullayarov, Baishev, Barkova, Samsonov.  相似文献   

8.
Using the results of coordinated experiments on the modification of the high-latitude ionosphere by powerful HF radio emission of the EISCAT/Heating facility, effects of the impact of powerful HF radio waves of the ordinary (O-mode) and extraordinary (Х-mode) polarization on the high-latitude ionospheric F region have been compared. During the experiments, a powerful HF radio wave was emitted in the magnetic zenith direction at frequencies within the 4.5–7.9 MHz range. The effective power of the emission was 150–650 MW. The behavior and characteristics of small-scale artificial ionospheric irregularities (SAIIs) during O- and X-heating at low and high frequencies are considered in detail. A principal difference has been found in the development of the Langmuir and ion–acoustic turbulence (intensified by the heating of the plasma and ion–acoustic lines in the spectrum of the EISCAT radar of incoherent scatter of radio waves) in the О- and Х-heating cycles after switching on the heating facility. It has been shown that, under the influence on the ionospheric plasma of a powerful HF radio wave of the Х-polarization, intense spectral components in the spectrum of the narrow-band artificial ionospheric radio emission (ARI) were registered at distances on the order of 1200 km from the heating facility.  相似文献   

9.
The spatial–temporal variations in aurora and VLF emissions during an weak intensification in the auroral zone morning sector on December 30, 2011, have been analyzed. The event was accompanied by a negative bay (~70 nT) in the X component of the magnetic field at ground stations in northern Scandinavia. At the recovery phase of this bay, the precipitation zone moved and VLF emission frequency simultaneously increased over ten minutes, which may indicate that waves and precipitating electrons had a common source. VLF noise bursts in the 600–1000 Hz band with a characteristic modulation scale of ~10 s and the corresponding aurora intensifications localized in the ~100 km region were observed during the following ten minutes, which also confirms that recorded waves are related to electron precipitation. This correspondence of the pulsating aurora periods and VLF noise modulation has been revealed for the first time. The role of VLF wave generation processes during the cyclotron interaction with electrons in the magnetosphere and the propagation of these waves from the magnetosphere to the observation point are discussed.  相似文献   

10.
An analysis of energy-dispersed structures of protons and populations of electrons has been made using the Interball-2 satellite data for the apogee parts of 1579 (September 13, 1997) and 1276 (July 2, 1997) orbits. At each orbit, the satellite crossed the auroral zone twice at altitudes of 13500–19000 km moving first poleward (the first crossing) and then equatorward (the second crossing). A transformation of the types of energy-dispersed structures near the outer boundary of the auroral zone was observed at the first and second crossings: VDIS into TDIS (orbit 1579) and TDIS into VDIS (orbit 1276). The VDIS represent solitary structures of 0.3–10 keV consisting of several small-scale structures 2–5 min long, while the TDIS are repeating injections of 1–14 keV 1–3 min long with the repetition period of 2–4 min. It is shown that the VDIS-to-TDIS and TDIS-to-VDIS transformations are distinctly related to the phase of a substorm. The VDIS were observed under magnetically quiet conditions before a substorm or at the recovery phase of a substorm, while TDIS were observed during the main phase of a substorm.  相似文献   

11.
Poor quality of functioning of GPS during solar flares on December 6 and 13, 2006 is analyzed in this paper. These flares were accompanied by extremely high (unexampled) level of the solar radio emission flux. A comparison is made of these events with the solar flare on October 28, 2003. Statistically reliable experimental evidence is obtained that GPS positioning was partially paralyzed on the sunlit side of the Earth during the strongest bursts of solar radio emission. The obtained results give a serious ground to revise the role played by space weather factors in operation of modern satellite systems and to take these factors into account more carefully, when such systems are designed and exploited.  相似文献   

12.
Radio bursts in the frequency range of 100–1500 kHz, recorded in 1997–2000 on the INTERBALL-1 satellite during the solar flares preceding the strong geomagnetic storms with D st < ?100 nT, are analyzed in this paper. The observed long-wave III-type radio bursts of solar origin at frequencies of 1460 and 780 kHz were characterized by large values of the flux S f = 10?15 ?10?17 W/m2 Hz and duration longer than 10 min. The rapid frequency drift of a modulated radio burst continued up to a frequency of 250 kHz, which testified that the exciting agent (a beam of energetic electrons) propagated from the Sun to the Earth. All such flares were characterized by the appearance of halo coronal mass ejections, observed by the LASCO/SOHO, and by the presence of a southward Bz-component of the IMF, measured on the ACE and WIND spacecraft. In addition, shortly after radio bursts, the INTERBALL-1 satellite has recorded the fluxes of energetic electrons with E > 40 keV.  相似文献   

13.
On the basis of data, obtained by means of the ground-based solar service RSTN (Radio Solar Telescope Network) and the geostationary satellite system GOES, the relationship between the solar cosmic rays (SCR) intensity I p with the proton energy E p > 1 MeV and parameters of meter-decameter type II radio bursts in the frequency range of 25–180 MHz is studied. The process of proton acceleration by shock waves was characterized by the frequency drift velocity of radio bursts V mII and the relative difference between radio emission frequencies at the first two harmonics b. It is shown that the coefficient of correlation between I p and b increases with E p growing from 0.40 to 0.70, while a similar coefficient between I p and V mII does not exceed 0.30. Indications in favor of the two-stage SCR acceleration model are obtained.  相似文献   

14.
Radio bursts in the frequency range 100–1500 kHz and fluxes of energetic electrons with energies of 20–450 keV recorded onboard the Interball-1 satellite during prominent chromospheric flares on the Sun are studied. The time of propagation of the electrons to the Earth is estimated using the method of comparison of the moments of the beginning of radio emission generation during the explosive phase of the flare and the arrival of the accelerated electrons to the Earth.  相似文献   

15.
We have considered variations in fields and particle fluxes in the near-Earth plasma sheet on the THEMIS-D satellite together with the auroral dynamics in the satellite-conjugate ionospheric part during two substorm activations on December 19, 2014 with K p = 2. The satellite was at ~8.5RE and MLT = 21.8 in the outer region of captured energetic particles with isotropic ion fluxes near the convection boundary of electrons with an energy of ~10 keV. During substorm activations, the satellite recorded energetic particle injections and magnetic field oscillations with a period of ~90 s. In the satellite-conjugate ionospheric part, the activations were preceded by wavelike disturbances of auroral brightness along the southern azimuthal arc. In the expansion phase of activations, large-scale vortex structures appeared in the structure of auroras. The sudden enhancements of auroral activity (brightening of arcs, auroral breakup, and appearance of NS forms) coincided with moments of local magnetic field dipolarization and an increase in the amplitude Pi2 of pulsations of the Bz component of the magnetic field on the satellite. Approximately 30–50 s before these moments, the magnetosphere was characterized by an increased rate of plasma flow in the radial direction, which initiated the formation of plasma vortices. The auroral activation delays relative to the times when plasma vortices appear in the magnetosphere decreased with decreasing latitude of the satellite projection. The plasma vortices in the magnetosphere are assumed to be responsible for the observed auroral vortex structures and the manifestation of the hybrid vortex instability (or shear flow ballooning instability) that develops in the equatorial magnetospheric plane in the presence of a shear plasma flow in the region of strong pressure gradients in the Earthward direction.  相似文献   

16.
In the implementation of the space projects Rosetta and Mars Express, a large-scale series of experiments has been carried out on radio sounding circumsolar plasma by decimeter (S-band) and centimeter (X-band) signals of the Rosetta comet probe (from October 3 to October 31, 2010) and the Mars Express satellite of Mars (from December 25, 2010 to March 27, 2011). It was found that in the phase of ingress the spacecraft behind the Sun, the intensity of the frequency fluctuations increases in accordance with a power function whose argument is the solar offset distance of radio ray path, and when the spacecraft is removed from the Sun (the egress phase), frequency fluctuations are reduced. Periodic strong increases in the fluctuation level, exceeding by a factor of 3–12 the background values of this value determined by the regular radial dependences, are imposed on the regular dependences. It was found that increasing the fluctuations of radio waves alternates with the periodicity m × T or n × T, where m = 1/2, n = 1, аnd T is the synodic period of the Sun’s rotation (T ≈ 27 days). It was shown that the corotating structures associated with the interaction regions of different speed fluxes are formed in the area of solar wind acceleration and at distances of 6–20 solar radii already have a quasi-stationary character.  相似文献   

17.
Results of two-year (August 1995–July 1997) continuous observations of the auroral kilometric radiation (AKR) in the AKR-X experiment on board the high-apogee Interball-1 satellite are presented. Observations were carried out in the minimum of solar activity in a frequency range of 100–1500 kHz. The most effective detections of AKR occurred near the maximum of its spectrum at a frequency of 252 kHz and also at a frequency of 500 kHz. The data obtained made it possible to study in more detail the character of AKR global directivity, its frequency dependence, and some other parameters of the emission. These data are interpreted qualitatively in the context of the emission mechanism caused by cyclotron maser instability.  相似文献   

18.
Using a detector of near ultra-violet (UV) emission (wavelength range 300–400 nm) [1] onboard the Universitetsky-Tatiana satellite with an orbit height of 950 km and inclination of 81° we have detected and studied short UV flashes [2–5]. In this paper the observed UV flashes are classified according to the type of their time profiles, and the times of emission intensity rise and decay are investigated in every flash. Using the data on time profiles it turned out to be possible to estimate the flash energy in the atmosphere even in case of saturation of a signal measuring channel at the maximum of emission. The energy spectrum of observed flashes is estimated. Time and energy characteristics of the flashes are important for choosing a model of development of electric discharges in the upper atmosphere that are responsible for observed emission.  相似文献   

19.
The results of investigation of the geomagnetic and auroral response to the commencement of a severe magnetic storm of November 20, 2003, are presented. It is established that the onset of SC led to the brightening of the auroral arc in the dusk sector for 2–3 min with its extent to the east with a velocity of 10–20 km/s and to displacement poleward with a velocity of 1.0 km/s. Furtheron, the fast auroral expansions of short duration (5 min) to the pole up to 2–4°were observed, repeating every 5–10 min during 40 min, which led to the spatial modulation of the brightness of the glow and to generation of PSC pulsations with similar periods of oscillations. The broadening of aurora poleward had a steplike character, with generation of new arcs poleward of previous ones 5 arcs per 1.5 min. The modulation of brightness of the glow and PSC were observed against the background of intensification of a two-cell DP2 type current system and were accompanied by multiple turnings of the IMF Bz from south to north and back. It is assumed that the source of PSC pulsations was a modulation of the intensity of the DP2 ionosphere currents as a result of variations of the magnetosphere convection level.Translated from Kosmicheskie Issledovaniya, Vol. 42, No. 6, 2004, pp. 608–615.Original Russian Text Copyright © 2004 by Baishev, Borisov, Velichko, Solovyev, Yumoto.  相似文献   

20.
Measurements of the wave emission of the topside ionosphere made onboard the APEX satellite using the electric component of the wave field in the 0.1–10 MHz frequency band are presented. At middle latitudes a wave intensity decrease was observed in the broad-band spectrum of the electrostatic noise at the electron cyclotron frequency. It is shown that a break in the spectrum of electrostatic modes at the electron cyclotron frequency (the absence of the plasma eigen-frequencies) may be a cause of the observed effect. The increase of the intensity at the electron cyclotron frequency in the ionospheric trough and at latitudes above the trough region as compared to middle latitudes may be explained by the capture by plasma irregularities of the electromagnetic emission of the auroral electron fluxes.__________Translated from Kosmicheskie Issledovaniya, Vol. 43, No. 3, 2005, pp. 201–208.Original Russian Text Copyright © 2005 by Izhovkina, Prutensky, Pulinets, Kiraga, Klos, Rothkael.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号