首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
    
Empirical mass-loss rates were derived for 28 luminous O stars from radio fluxes and H equivalent widths. Comparison with theoretical values predicted by the theory of radiatively driven winds reveals a discrepancy of 0.30±0.05 dex, with the theoretical values being too low. We show that there is not only a mass-loss discrepancy but also a momentum flux discrepancy. The theoretically predicted momentum fluxes are too low by 0.17±0.04 dex. This discrepancy is independent of the adopted stellar mass. We demonstrate that the momentum discrepancy in the most luminous O stars is comparable to the one found in the least extreme Wolf-Rayet stars. We suggest that the physical reason for the break-down of the theory in Wolf-Rayet stars and the most luminous O stars may be related.  相似文献   

2.
This review summarises recent studies of O-stars, Luminous Blue Variables (LBVs) and Wolf-Rayet (WR) stars, emphasising observations and analyses of their atmospheres and stellar winds yielding determinations of their physical and chemical properties. Studies of these stellar groups provide important tests of both stellar wind theory and stellar evolution models incorporating mass-loss effects. Quantitative analyses of O-star spectra reveal enhanced helium abundances in Of and many luminous O-supergiants, together with CNO anomalies in OBN and Ofpe/WN9 stars, indicative of evolved objects. Enhanced helium, and CNO-cycle products are observed in several LBVs, implying a highly evolved status, whilst for the WR stars there is strong evidence for the exposition of CNO-cycle products in WN stars, and helium-burning products in WC and WO stars. The observed wind properties and mass-loss rates derived for O-stars show, in general terms, good agreement with predictions from the latest radiation-driven wind models, although some discrepancies are apparent. Several LBVs show similar mass-loss rates at maximum and minimum states, contrary to previous expectations, with the mechanism responsible for the variability and outbursts remaining unclear. WR stars exhibit the most extreme levels of mass-loss and stellar wind momenta. Whilst alternative mass-loss mechanisms have been proposed, recent calculations indicate that radiation pressure alone may be sufficient, given the strong ionization stratification present in their winds.  相似文献   

3.
Using the Hubble Space Telescope (HST) and the Faint Object Spectrograph (FOS) high signal to noise spectrograms were obtained for 15 OB stars in the Magellanic Clouds***, three of which are of spectral type O3. The data cover the spectral region from 1150 A – 2300 A with a resolution of /1 A. One O8.5 supergiant, OB78#231, in M31is also included in this work. These data are a substantial improvement on previous high resolution IUE observations in the Magellanic Clouds (Walborn et al. 1985 and references therein) because of the smaller aperture and the much better signal to noise ratio, while no high resolution UV spectra of O stars in M31 have been obtained before. In this paper we discuss various morphological aspects of the spectra, concerning metallicity and the stellar winds, compared to galactic analogues.  相似文献   

4.
We present the results of our observations of stars of type O5 and earlier and show that inclusion of the line blocking between 228 and 912 A solves the problem found by Herrero et al. (1992) in the determination of their stellar parameters. We study the influence of the line blocking and other effects on the mass and helium discrepancies and show that the first one is reduced by the use of spherical, non hydrostatic model atmospheres and that the second one is probably due to exposure of CNO material.The INT is operated on the island of La Palma by the RGO in the Spanish Observatorio de El Roque de los Muchachos of the Instituto de Astrofsica de Canarias  相似文献   

5.
The fundamental properties of 24 Galactic WN stars are determined from analyses of their optical, UV and IR spectra using sophisticated model atmosphere codes (Hillier, 1987, 1990). Terminal velocities, stellar luminosities, temperatures, mass loss rates and abundances of hydrogen, helium, carbon, nitrogen and oxygen are determined. Stellar parameters are derived using diagnostic lines and interstellar reddenings found from fitting theoretical continua to observed energy distributions.Our results confirm that the parameters of WN stars span a large range in temperature (T*=30–90,000 K), luminosity (log L*/L=4.8–5.9), mass loss (M=0.9–12×10–5 M yr–1) and terminal velocity (v =630–3300 km s–1). Hydrogen abundances are determined, and found to be low in WNEw and WNEs stars (<15% by mass) and considerable in most WNL stars (1–50%). Metal abundances are also determined with the nitrogen content found to lie in the range N/He=1–5×10–3 (by number) for all subtypes, and C/N 0.02 in broad agreement with the predictions of Maeder (1991). Enhanced O/N and O/C is found for HD 104994 (WN3p) suggesting a peculiar evolutionary history. Our results suggest that single WNL+abs stars may represent an evolutionary stage immediately after the Of phase. Since some WNE stars exist with non-negligible hydrogen contents (e.g. WR136) evolution may proceed directly from WNL+abs to WNE in some cases, circumventing the luminous blue variable (LBV) or red supergiant (RSG) stage.  相似文献   

6.
We are in the process of surveying the linear polarization in luminous, early-type stars. We here report on new observations of the B [e] stars S 18 and R 50, and of the Luminous Blue Variables HR Car, R 143, and HD 160529. Together with previously published data, these observations provide clear evidence for the presence of intrinsic polarization in 1 B[e] star (HD 34664) and in 5 LBVs ( Car, P Cyg, R 127, AG Car, and HR Car). The data indicate that anisotropic stellar winds are a common occurrence among massive stars in these particular evolutionary stages. For such stars, mass-loss rates estimated using the assumption of a spherical, homogeneous and stationary outflow may be in error.  相似文献   

7.
We present helium and CNO isotopic yields for massive mass-losing stars in the initial mass range 15M M i 50M . We investigate their dependence on assumptions about mass loss rates, internal mixing processes, and metallicity, and specify the contributions from stellar winds and from supernova ejecta.  相似文献   

8.
The status of the continuing effort to construct radiation driven wind models for O-Stars atmospheres is reviewed. Emphasis is given to several problems relating to the fomation of UV line spectra the use of accurate atomic data, the inclusion of EUV radiation by shock heated matter, the simulation of photospheric line blocking.A new tool for O-star diagnostics is presented. This is based on the use of wind models to calculate synthetic high resolution spectra covering the observable UV region. A comparison with observed spectra then gives physical constraints on the properties of stellar winds and stellar parameters, additionally abundances can be determined.The astrophysical potential of this method is demonstrated by an application to two Of-stars, the galactic O4f-star -Puppis and the LMC O3f-star Melnick 42. With regard to effective temperatures and gravities, the results from the application of classical methods to the analysis of photospheric lines are only partially verified. Explanations for the shortcomings of classical NLTE methods are discussed.  相似文献   

9.
Cool giant and supergiant stars generally present low velocity winds with high mass-loss rates. Several models have been proposed to explain the acceleration process of these winds. Although dust is known to be present in these objects, the radiation pressure on these particles is uneffective in reproducing the observed physical parameters of the wind. The most promising acceleration mechanism cited in the literature is the transference of momentum and energy from Alfvén waves to the gas. Usually, these models consider the wind to be isothermal. We present a stellar wind model in which the Alfvén waves are used as the main acceleration mechanism, and determine the temperature profile by solving the energy equation taking into account both the radiative losses and the wave heating. We also determine, self-consistently, the magnetic field geometry as the result of the competition between the magnetic field and the thermal pressure gradient. As the main result, we show that the magnetic geometry presents a super-radial index in the region where the gas pressure is increasing. However, this super-radial index is greater than that observed for the solar corona.  相似文献   

10.
We report on our recent progress in modeling non-LTE atmospheres of O-stars including blanketing by lines from the iron group elements. The numerical method to account for the huge number of atomic levels and line transitions is presented. Results of exploratory model calculations examining the effects on the temperature structure, the hydrogen and helium line profiles and UV/EUV fluxes are discussed.  相似文献   

11.
We present up-to-date evolutionary models of low-mass stars, from M0.6 M down to the hydrogen burning minimum mass, using recent equation of state and synthetic spectra calculations. Comparison is made with observed luminosity function for these objects. We also present implications for the dark-matter distribution in the galactic halo.  相似文献   

12.
In this review we present the main results obtained by the ISO satellite on the abundance and spatial distribution of water vapor in the direction of molecular clouds, evolved stars, galaxies, and in the bodies of our Solar System. We also discuss the modeling of H2O and the difficulties found in the interpretation of the data, the need of collisional rates and the perspectives that future high angular and high spectral resolution observations of H2O with the Herschel Space Observatory will open.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号