共查询到20条相似文献,搜索用时 15 毫秒
1.
Yoon Kyung Seo Dong Young Rew Georg Kirchner Eunseo Park Mansoo Choi Sung Yeol Yu Jiwoong Heo Cheong Youn 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
For the development of a telescope that is capable of precisely tracking satellites and high-speed operation such as satellite laser ranging, a special method of telescope operation is required. This study aims to propose a new telescope operation method and system configuration for the independent development of a mount and an operation system which includes the host computer. Considering that the tracking of a satellite is performed in real time, communication and synchronization between the two independent subsystems are important. Therefore, this study applied the concept of time synchronization, which is used in various fields of industry, to the communication between the command computer and the mount. In this case, communication delays do not need to be considered in general, and it is possible to cope with data loss. Above all, when the mount is replaced in the future, only the general communication interface needs to be modified, and thus, it is not limited by replacement in terms of the overall system management. The performance of the telescope operation method developed in this study was verified by applying the method to the first mobile SLR system in Korea. This study is significant in that it proposed a new operation method and system configuration, to which the concept of time synchronization was applied, for the observation system that requires an optical telescope. 相似文献
2.
Carey E. Noll 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
Since 1982, the Crustal Dynamics Data Information System (CDDIS) has supported the archive and distribution of geodetic data products acquired by the National Aeronautics and Space Administration (NASA) as well as national and international programs. The CDDIS provides easy, timely, and reliable access to a variety of data sets, products, and information about these data. These measurements, obtained from a global network of nearly 650 instruments at more than 400 distinct sites, include DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite), GNSS (Global Navigation Satellite System), SLR and LLR (Satellite and Lunar Laser Ranging), and VLBI (Very Long Baseline Interferometry). The CDDIS data system and its archive have become increasingly important to many national and international science communities, particularly several of the operational services within the International Association of Geodesy (IAG) and its observing system the Global Geodetic Observing System (GGOS), including the International DORIS Service (IDS), the International GNSS Service (IGS), the International Laser Ranging Service (ILRS), the International VLBI Service for Geodesy and Astrometry (IVS), and the International Earth rotation and Reference frame Service (IERS). Investigations resulting from the data and products available through the CDDIS support research in many aspects of Earth system science and global change. Each month, the CDDIS archives more than one million data and derived product files totaling over 90 Gbytes in volume. In turn, the global user community downloads nearly 1.2 Tbytes (over 10.5 million files) of data and products from the CDDIS each month. The requirements of analysts have evolved since the start of the CDDIS; the specialized nature of the system accommodates the enhancements required to support diverse data sets and user needs. This paper discusses the CDDIS, including background information about the system and its user communities, archive contents, available metadata, and future plans. 相似文献
3.
Ernst Schrama 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(1):235-247
In this paper we discuss our efforts to perform precision orbit determination (POD) of CryoSat-2 which depends on Doppler and satellite laser ranging tracking data. A dynamic orbit model is set-up and the residuals between the model and the tracking data is evaluated. The average r.m.s. of the 10?s averaged Doppler tracking pass residuals is approximately 0.39?mm/s; and the average of the laser tracking pass residuals becomes 1.42?cm. There are a number of other tests to verify the quality of the orbit solution, we compare our computed orbits against three independent external trajectories provided by the CNES. The CNES products are part of the CryoSat-2 products distributed by ESA. The radial differences of our solution relative to the CNES precision orbits shows an average r.m.s. of 1.25?cm between Jun-2010 and Apr-2017. The SIRAL altimeter crossover difference statistics demonstrate that the quality of our orbit solution is comparable to that of the POE solution computed by the CNES. In this paper we will discuss three important changes in our POD activities that have brought the orbit performance to this level. The improvements concern the way we implement temporal gravity accelerations observed by GRACE; the implementation of ITRF2014 coordinates and velocities for the DORIS beacons and the SLR tracking sites. We also discuss an adjustment of the SLR retroreflector position within the satellite reference frame. An unexpected result is that we find a systematic difference between the median of the 10 s Doppler tracking residuals which displays a statistically significant pattern in the South Atlantic Anomaly (SSA) area where the median of the velocity residuals varies in the range of ?0.15 to +0.15?mm/s. 相似文献
4.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2020,65(4):1182-1195
Accurate knowledge of the rotational dynamics of a large space debris is crucial for space situational awareness (SSA), whether it be for accurate orbital predictions needed for satellite conjunction analyses or for the success of an eventual active debris removal mission charged with stabilization, capture and removal of debris from orbit. In this light, the attitude dynamics of an inoperative satellite of great interest to the space debris community, the joint French and American spacecraft TOPEX/Poseidon, is explored. A comparison of simulation results with observations obtained from high-frequency satellite range measurements is made, showing that the spacecraft is currently spinning about its minor principal axis in a stable manner. Predictions of the evolution of its attitude motion to 2030 are presented, emphasizing the uncertainty on those estimates due to internal energy dissipation, which could cause a change of its spin state in the future. The effect of solar radiation pressure and the eddy-current torque are investigated in detail, and insights into some of the satellite’s missing properties are provided. These results are obtained using a novel, open-source, coupled orbit-attitude propagation software, the Debris SPin/Orbit Simulation Environment (D-SPOSE), whose primary goal is the study of the long-term evolution of the attitude dynamics of large space debris. 相似文献
5.
D. Kucharski G. Kirchner F. Koidl E. Cristea 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009,43(12):1926-1930
Satellite Laser Ranging (SLR) stations measure distance to the satellites equipped with Corner Cube Reflectors (CCRs). These range measurements contain information about spin parameters of the spacecraft. In this paper we present results of spin period determination of two passive satellites from SLR data only: 10 years of LAGEOS-1 (10426 values), and 15 years of LAGEOS-2 (15580 values). The measurements have been made by standard 10 Hz SLR systems and the first 2 kHz SLR system from Graz (Austria). The obtained data allowed calculation of the initial spin period of the satellites: 0.61 s for LAGEOS-1 and 0.906 s for LAGEOS-2. Long time series of the spin period values show that the satellite’s slowing down rate is not constant but is oscillating with a period of 846 days for LAGEOS-1 and 578 days for LAGEOS-2. The results presented here definitely prove that the SLR is a very efficient technique able to measure spin period of the geodetic satellites. 相似文献
6.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2020,65(5):1333-1343
This paper investigates the motion control system of an optical telescope system used for precision satellite tracking and ranging applications. The system uses direct-drive permanent magnet synchronous motors (PMSMs) for high precision positioning. To overcome the performance limitations due to system dynamics and position dependent plant variations, a disturbance observer based control system is utilized. This paper contributes the detailed analysis, design and implementation of such an advanced control concept for the performance improvement of precision satellite tracking systems. Satellite tracking experiments are conducted to verify the performance of the proposed system. Utilizing the proposed control concept, the RMS servo error is reduced by a factor of 3.8 to well below the arcsecond range, achieving seeing limited tracking. 相似文献
7.
Pierre Exertier E. Samain N. Martin C. Courde M. Laas-Bourez C. Foussard Ph. Guillemot 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The Time Transfer by Laser Link (T2L2) is a very high resolution time transfer technique based on the recording of arrival times of laser pulses at the satellite. T2L2 was designed to achieve time stability in the range of 1 ps over 1000 s and an accuracy better than 100 ps. The project is in operation onboard the Jason-2 satellite since June 2008. The principle is based on the Satellite Laser Ranging (SLR) technology; it uses the input of 20–25 SLR stations of the international laser network which participate in the tracking. This paper focuses on the data reduction process which was developed specifically to transform the raw information given by both space instrument and ground network: first to identify the triplets (ground and onboard epochs and time of flight of the laser pulse), second to estimate a usable product in terms of ground-to-space time transfer (including instrumental corrections), and thirdly to produce synchronization between any pair of remote ground clocks. In describing the validation of time synchronizations, the paper opens a way for monitoring the time difference between ultra-stable clocks thanks to a laser link at a few ps level for Common View passes. It highlights however that without accurately characterizing the onboard oscillator of Jason-2 and knowing the unavailability of time calibrations of SLR stations generally, time transfer over intercontinental distances remain difficult to be accurately estimated. 相似文献
8.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2020,65(5):1518-1527
Attitude is the important parameter for active debris removal and collision avoidance. This paper deduced the spin axis orientation and spin period of the rocket body, CZ-3B R/B (NORAD ID 38253), using the satellite laser ranging and light curve data measured with single-photon detector at Graz station. The epoch method and LC & SLR residuals fitting were combined to determine these values. The derived right ascension angle was around 220°, the declination angle was near 64° and the sidereal period was calculated to be 117.724 s, for 2017-07-03. The results derived from the two distinct methods were mutually validated. Rocket bodies are a major contributor to space debris and this work provides a reference for attitude determination and attitude modelling. 相似文献
9.
Wendong Meng Haifeng Zhang Peicheng Huang Jie Wang Zhongping Zhang Ying Liao Yang Ye Wei Hu Yuanming Wang Wanzhen Chen Fumin Yang Ivan Prochazka 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
High-precision time synchronization between satellites and ground stations plays the vital role in satellite navigation system. Laser time transfer (LTT) technology is widely recognized as the highest accuracy way to achieve time synchronization derived from satellite laser ranging (SLR) technology. Onboard LTT payload has been designed and developed by Shanghai Astronomical Observatory, and successfully applied to Chinese Beidou navigation satellites. By using the SLR system, with strictly controlling laser firing time and developing LTT data processing system on ground, the high precise onboard laser time transfer experiment has been first performed for satellite navigation system in the world. The clock difference and relative frequency difference between the ground hydrogen maser and space rubidium clocks have been obtained, with the precision of approximately 300 ps and relative frequency stability of 10E−14. This article describes the development of onboard LTT payload, introduces the principle, system composition, applications and LTT measuring results for Chinese satellite navigation system. 相似文献
10.
Alexandre Belli Nikita P. Zelensky Frank G. Lemoine Douglas S. Chinn 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(3):930-944
Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) is a tracking technique based on a one-way ground to space Doppler link. For Low Earth Orbit (LEO) satellites, DORIS shows a robust capability in terms of data coverage and availability, due to a wide and well-distributed ground network, where data are made available by the International Doris Service (IDS). However, systematic errors remain in the DORIS data, such as instabilities of the on-board clock due to radiation encountered in space, which limit the accurate determination of station positions.The DORIS on-board clock frequency stability is degraded by the increased radiation found in the region of the South Atlantic Anomaly (SAA) and has been shown to degrade station position estimation. This paper introduces a new model correction to the DORIS data for the frequency of the Jason-2 Ultra Stable Oscillator (USO), derived from the Time Transfer by Laser Link (T2L2) experiment (Belli and Exertier, 2018). We show that a multi-satellite DORIS solution including this T2L2-corrected data applied to the frequency modelling for The DORIS data, improves the estimation of station coordinates. We show the tie residuals with respect to collocated GPS stations are improved by several millimeters. We also demonstrate that the 117-day (Jason-2) draconitic signal in the geophysical parameters is reduced, implying that the origin of this signal is not just solar radiation pressure mis-modeling, but also radiation-induced clock perturbations on the Jason-2 DORIS Ultra-Stable-Oscillator (USO). Finally we demonstrate through comparisons with the International Earth Rotations and Reference Systems Service (IERS) C04 series for Earth Orientation Parameters (EOP), that the estimation of EOP is improved in both a Jason-2 DORIS-only and a multi-satellite DORIS solution for EOP. 相似文献
11.
Pascal Willis Stelios Mertikas Don F. Argus Olivier Bock 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Due to its specific geographical location as well as its geodetic equipment (DORIS, GNSS, microwave transponder and tide gauges), the Gavdos station in Crete, Greece is one of the very few sites around the world used for satellite altimetry calibration. To investigate the quality of the Gavdos geodetic coordinates and velocities, we analyzed and compared here DORIS and GPS-derived results obtained during several years of observations. The DORIS solution is the latest ignwd11 solution at IGN, expressed in ITRF2008, while the GPS solution was obtained using the GAMIT software package. Current results show that 1–2 mm/yr agreement can be obtained for 3-D velocity, showing a good agreement with current geophysical models. In particular, the agreement obtained for the vertical velocity is around 0.3–0.4 mm/yr, depending on the terrestrial reference frame. As a by-product of these geodetic GPS and DORIS results, Zenith Tropospheric Delays (ZTDs) estimations were also compared in 2010 between these two techniques, and compared to ECMWF values, showing a 6.6 mm agreement in dispersion without any significant difference between GPS and DORIS (with a 97.6% correlation), but with a 13–14 mm agreement in dispersion when comparing to ECMWF model (with only about 90% correlation for both techniques). These tropospheric delay estimations could also provide an external calibration of the tropospheric correction used for the geophysical data of satellite altimetry missions. 相似文献
12.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013,52(5):930-935
The high repetition rate satellite laser ranging (SLR) measurements to the fast spinning satellites contain a frequency signal caused by the rotational motion of the corner cube reflector (CCR) array. The spectral filter, developed here, is based on the Lomb algorithm, and is tested with the simulated and the observed high repetition rate SLR data of the geodetic satellite Ajisai (spin period ∼2 s). The filter allows for the noise elimination from the SLR data, and for identification of the returns from the single CCRs of the array – even for the low return rates. Applying the spectral filter to the simulated SLR data increases the S/N ratio by a factor 40–45% for all return rates. Filtering out the noise from the observed data strengthens the frequency signal by factor of ∼25 for the low return rates, which significantly helps to determine the spin phase of the satellite. The spectral filter is applied to the Graz SLR data and the spin rates of Ajisai are determined by two different methods: the frequency analysis and the phase determination of the spinning retroreflector array.The analysis of more than 8 years of the Graz SLR measurements indicates an exponential spin rate trend: f = 0.67034 exp(−0.0148542 Y) [Hz], RMS = 0.085 mHz, where Y is the year since launch. The highly accurate spin rate information demonstrates periodic changes related to the precession of the orbital plane of Ajisai, as it determines the amount of energy received by the satellite from the Sun. The rate of deceleration of Ajisai is not constant: the half life period of the satellite’s spin oscillates around 46.7 years with an amplitude of about 5 years. 相似文献
13.
14.
Sophie Pireaux Pascale Defraigne Laurence Wauters Nicolas Bergeot Quentin Baire Carine Bruyninx 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
The stability of GPS time and frequency transfer is limited by the fact that GPS signals travel through the ionosphere. In high precision geodetic time transfer (i.e. based on precise modeling of code and carrier phase GPS data), the so-called ionosphere-free combination of the code and carrier phase measurements made on the two frequencies is used to remove the first-order ionospheric effect. In this paper, we investigate the impact of residual second- and third-order ionospheric effects on geodetic time transfer solutions i.e. remote atomic clock comparisons based on GPS measurements, using the ATOMIUM software developed at the Royal Observatory of Belgium (ROB). The impact of third-order ionospheric effects was shown to be negligible, while for second-order effects, the tests performed on different time links and at different epochs show a small impact of the order of some picoseconds, on a quiet day, and up to more than 10 picoseconds in case of high ionospheric activity. The geomagnetic storm of the 30th October 2003 is used to illustrate how space weather products are relevant to understand perturbations in geodetic time and frequency transfer. 相似文献
15.
Young-Rok Kim Eunseo Park Eun-Jung Choi Sang-Young Park Chandeok Park Hyung-Chul Lim 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
In this study, genetic resampling (GRS) approach is utilized for precise orbit determination (POD) using the batch filter based on particle filtering (PF). Two genetic operations, which are arithmetic crossover and residual mutation, are used for GRS of the batch filter based on PF (PF batch filter). For POD, Laser-ranging Precise Orbit Determination System (LPODS) and satellite laser ranging (SLR) observations of the CHAMP satellite are used. Monte Carlo trials for POD are performed by one hundred times. The characteristics of the POD results by PF batch filter with GRS are compared with those of a PF batch filter with minimum residual resampling (MRRS). The post-fit residual, 3D error by external orbit comparison, and POD repeatability are analyzed for orbit quality assessments. The POD results are externally checked by NASA JPL’s orbits using totally different software, measurements, and techniques. For post-fit residuals and 3D errors, both MRRS and GRS give accurate estimation results whose mean root mean square (RMS) values are at a level of 5 cm and 10–13 cm, respectively. The mean radial orbit errors of both methods are at a level of 5 cm. For POD repeatability represented as the standard deviations of post-fit residuals and 3D errors by repetitive PODs, however, GRS yields 25% and 13% more robust estimation results than MRRS for post-fit residual and 3D error, respectively. This study shows that PF batch filter with GRS approach using genetic operations is superior to PF batch filter with MRRS in terms of robustness in POD with SLR observations. 相似文献
16.
Cheol Hoon Park Young Su SonByung In Kim Sang Young HamSung Whee Lee Hyung Chul Lim 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012,49(1):177-184
In this study, we have proposed and implemented a design for the tracking mount and controller of the ARGO-M (Accurate Ranging system for Geodetic Observation - Mobile) which is a mobile satellite laser ranging (SLR) system developed by the Korea Astronomy and Space Science Institute (KASI) and Korea Institute of Machinery and Materials (KIMM). The tracking mount comprises a few core components such as bearings, driving motors and encoders. These components were selected as per the technical specifications for the tracking mount of the ARGO-M. A three-dimensional model of the tracking mount was designed. The frequency analysis of the model predicted that the first natural frequency of the designed tracking mount was high enough. The tracking controller is simulated using MATLAB/xPC Target to achieve the required pointing and tracking accuracy. In order to evaluate the system repeatability and tracking accuracy of the tracking mount, a prototype of the ARGO-M was fabricated, and repeatability tests were carried out using a laser interferometer. Tracking tests were conducted using the trajectories of low earth orbit (LEO) and high earth orbit (HEO) satellites. Based on the test results, it was confirmed that the prototype of the tracking mount and controller of the ARGO-M could achieve the required repeatability along with a tracking accuracy of less than 1 arcsec. 相似文献
17.
Siavash Iran Pour Tilo Reubelt Nico Sneeuw 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Drawing on experience from Gravity Recovery and Climate Experiment (GRACE) data analysis, the scientific challenges were already identified in several studies. Any future mission should focus on improvement in both precision and resolution in space and time. For future gravity missions which use high quality sensors, aliasing of high frequency time-variable geophysical signals to the lower frequency signals is one of the most serious problems. The aliasing problem and the spatio-temporal resolution are mainly restricted by two sampling theorems describing the space-time sampling of satellite missions: (i) a Heisenberg-like uncertainty theorem which states that the product of spatial resolution and time resolution is constant, and (ii) the Colombo–Nyquist rule (CNR), which requires the number of satellite revolutions in a repeat period to be at least twice a given maximum spherical harmonic degree. The CNR holds under the assumption of equal ground-track spacing, and limits the spatial resolution of the gravity solution. 相似文献
18.
L.I. Dorman A.V. Belov E.A. Eroshenko L.I. Gromova N. Iucci A.E. Levitin M. Parisi N.G. Ptitsyna L.A. Pustilnik M.I. Tyasto E.S. Vernova G. Villoresi V.G. Yanke I.G. Zukerman 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2530-2536
Preliminary results of the EU INTAS Project 00810, which aims to improve the methods of safeguarding satellites in the Earth’s magnetosphere from the negative effects of the space environment, are presented. Anomaly data from the “Kosmos” series satellites in the period 1971–1999 are combined in one database, together with similar information on other spacecraft. This database contains, beyond the anomaly information, various characteristics of the space weather: geomagnetic activity indices (Ap, AE and Dst), fluxes and fluences of electrons and protons at different energies, high energy cosmic ray variations and other solar, interplanetary and solar wind data. A comparative analysis of the distribution of each of these parameters relative to satellite anomalies was carried out for the total number of anomalies (about 6000 events), and separately for high (5000 events) and low (about 800 events) altitude orbit satellites. No relation was found between low and high altitude satellite anomalies. Daily numbers of satellite anomalies, averaged by a superposed epoch method around sudden storm commencements and proton event onsets for high (>1500 km) and low (<1500 km) altitude orbits revealed a big difference in a behavior. Satellites were divided on several groups according to the orbital characteristics (altitude and inclination). The relation of satellite anomalies to the environmental parameters was found to be different for various orbits that should be taken into account under developing of the anomaly frequency models. 相似文献
19.
Ivan Prochazka Ulrich Schreiber Wolfgang Schäfer 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
We are presenting the new instrument, new technology available and new measurement technique proposal for the Galileo programme – optical detector for the laser time transfer and one way laser ranging ground to space. 相似文献