首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
频率捷变雷达信号源实时校准技术研究   总被引:1,自引:0,他引:1  
分析了原有频率捷变雷达信号源中频率校准方法存在的缺陷,在此基础上设计了实时校准的频率校准电路,提高了信号源的频率跟踪精度和稳定工作时间。  相似文献   

2.
根据GLONASS系统的频率计划和GLONASS接收机的特定结构,提出用变化钟频法实现GLONASS接收机的前端.对相应的前端频率合成器部分提出了具体要求,并给出了基于集成频率锁相环的频率合成器的设计与实现.讨论了固有合成频率偏差的来源和消除办法.分析了频率合成器的性能指标.实验表明,该合成器稳定性好,精度高,能够满足GLONASS实验样机的要求.   相似文献   

3.
提出了用均匀平行线阵和阵元输出信号的时间延迟估计时间欠采样来波频率、方位角和仰角的方法.该算法在DFT波束空间使用PRO-ESPRIT方法,实现频率无模糊估计,完成来波信号频率和角度的估计.频率间接估计算法是先估计数字频率,然后用数字频率求模拟频率,其估计方差比直接估计算法的方差要小几个数量级.仿真实验表明了算法的有效性.  相似文献   

4.
基于Visual Basic编程,设计了机载电子产品在振动条件下的频率调制测试方案。实现了利用工控机自动进行频率调制参数测试的方法。设计了统计直方图数据处理方案,按照正态分布的特性找出了寄生频率调制的标准偏差。实际应用表明,设计的频率调制测试系统人机界面友好,具有易用性,能自动快速地测量多个频率调制参数。  相似文献   

5.
介绍了频率微调及频率调整概念及手动频率微调的方法,指出频率微调在末制导雷达性能测试中的重要性,给出了一种在自动检测系统中的自动频率微调方法.  相似文献   

6.
我国BPL时号的频率控制系统及结果分析   总被引:1,自引:0,他引:1  
柯熙政 《宇航计测技术》1998,18(1):15-19,35
根据我国现行BPL时号的频率控制系统,分析TBPL时号频率控制系统的缺陷,对目前BPL时号的频率稳定性进行了评价,提出了一种新的频率控制方案。  相似文献   

7.
提高被动型原子频标的频率稳定度是原子频标设计中最重要的目标,文中分别详细推导了正弦波相位(频率)调制、方波相位(频率脉冲)调制、三角波相位(方波频率)调制时对频率稳定度有影响的Bn(m)值的计算公式;在此基础上分别计算为获得最佳频率稳定度时三种调制函数对应的调制指数,并得到正弦波调制时频率稳定度最好的结果,这对原子频标伺服电路的设计提供了理论依据。  相似文献   

8.
提出了用均匀平行线阵和阵元输出信号的时间延迟估计时间欠采样来波频率、方位角和仰角的方法.该算法在DFT波束空间使用PROESPRIT方法,实现频率无模糊估计,完成来波信号频率和角度的估计.频率间接估计算法是先估计数字频率,然后用数字频率求模拟频率,其估计方差比直接估计算法的方差要小几个数量级.仿真实验表明了算法的有效性.  相似文献   

9.
基于频率源信号时域稳定度的定义,建立了高稳晶振短期频率稳定度的仿真分析模型,能够对频率源输出频率做前处理、不同方差分析、识别噪声类型、并给出置信区间.在此基础上,引入了晶体振荡器老化特性与温度特性的数学模型.通过构建不同老化特性与温度特性下晶体振荡器输岀频率,在仿真分析模型中定量分析老化特性与温度特性对短期频率稳定度的...  相似文献   

10.
详细地介绍了203所研制的高分辨S波段雷达频率合成器的设计方案。在S波段10%的带宽内,实现了10M(1HZ)的频率分辨力小于40μS的频率捷变速度和-105dBc/Hz的相位噪声。同时,提出一种可实现快速频率转换的直接数字频率合成器(DDFS),它具有极高的频率分辨力(0.18μHz)和密集通道间隔相适应的频率转换速度,同时具有低的相位噪声。对于设计中主要考虑的提高分辨力、降低相位噪声、提高捷变速度、电磁兼容及参考源DDFS进行了分析讨论,并介绍了频率合成器的测量方法。  相似文献   

11.
高精度时间频率在空间科学技术中的应用探讨CSCD   总被引:1,自引:1,他引:0  
自上世纪50年代原子频标出现以后,极大促进了科学技术的发展,随着原子频标的发展,高精度时间频率信息在空间科学技术中将发挥重要的作用。本文介绍了空间高精度时间频率在空间科学、基础物理以及卫星导航技术方面应用前景,并对国外正在开展的空间高精度时间频率技术方面的计划、准备开展的相关应用研究,以及对毫秒脉冲星守时技术也进行了初步探讨,最后给出了开展空间高精度时间频率技术研究的一些建议。  相似文献   

12.
本文研究了一种基于时间梳原理的高频正弦信号相位差测量方法,给出了时间梳原理的数学模型,并详细分析了其特点,并将此原理首次应用于高频信号的数据采集中,可以用低频和被测信号构建一种高频等效采样技术,可以在不满足乃奎斯特采样定理下,对被测两路正弦信号进行同步采样,避免了高频信号采样的高采样率,结合多重互相关技术,实现了对高频正弦信号的相位差的高精度测量,实验结果表明本文算法对高频信号对高频正弦信号的相位差测量具有很高的测量精度,尤其在低信噪比下也有较高的测量精度,具有较高的工程实用价值。  相似文献   

13.
本文研究了一种基于时间梳原理的高频正弦信号幅值测量方法,介绍了时间梳原理并详细分析了其特点,并将此原理应用于高频信号的幅值测量中,可以在不满足乃奎斯特采样定理的条件下,用低于被测信号的频率对被测高频信号进行同步采样,避免了高频信号采样的高采样率,结合自相关和多重自相关技术,实现了对高频正弦信号的幅值的准确测量,实验结果表明本文算法对高频信号的幅值测量具有很高的测量准确度,尤其在低信噪比下也有较高的测量准确度,具有较高的工程实用价值。  相似文献   

14.
基于虚拟仪器技术、网络技术和批量化测量技术,探讨北斗/GNSS高精度时频应用终端的测试手段;提出应用测试模块化和VXI/PXI/LXI总线技术的测试设计方案,该方案具有多路标准时间频率参考信号一致性设计和网络远程测试校准设计;同时,提出北斗/GNSS高精度时频终端测试校准系统的结构设计及其应用模式。这将能有效提高北斗/GNSS时频终端测试的集成化和智能化水平。  相似文献   

15.
本文研究了一种基于时间梳原理的高频正弦信号幅值测量方法,介绍了时间梳原理并详细分析了其特点,并将此原理应用于高频信号的幅值测量中,可以在不满足乃奎斯特采样定理的条件下,用低于被测信号的频率对被测高频信号进行同步采样,避免了高频信号采样的高采样率,结合自相关和多重自相关技术,实现了对高频正弦信号的幅值的准确测量,实验结果表明本文算法对高频信号的幅值测量具有很高的测量准确度,尤其在低信噪比下也有较高的测量准确度,具有较高的工程实用价值。  相似文献   

16.
捷变频末制导雷达可有效提高武器系统的抗干扰能力,但是作为其专用测试设备的捷变频信号源的计量检定问题却难以得到有效解决。通过分析现有的测试技术,使用通用仪器设备构建测试平台,可实现专用捷变频信号源的自动计量校准。系统采用两路差频形成中频频差的检测方法进行瞬时频率测量,采用单脉冲引频激励测试技术,利用通用测试仪器实现捷变频参数的校准,将捷变频计量技术推向工程应用阶段,可避免通过研制生产专用的计量设备造成其本身难以计量的问题。  相似文献   

17.
自抗扰控制技术在转台频响伺服中的应用   总被引:1,自引:1,他引:0  
在转台频响伺服中,针对低频和低速时干扰难补偿、高频时相位滞后和幅值衰减程度急剧恶化、常规控制策略严重依赖精确对象模型等难题,引入不依赖精确对象模型的自抗扰控制技术,并设计了控制系统.控制系统中,自抗扰控制器用来在线观测补偿干扰,前置处理单元用来补偿相位和幅值.控制系统应用到转台频响伺服中,实测得到的"双十"标准下最大跟踪频率和扫频频率都大于转台出厂时的验收指标.实测结果表明:自抗扰控制技术应用到转台频响伺服中可以有效提升转台的频响性能.  相似文献   

18.
直接数字式合成技术之研究   总被引:3,自引:0,他引:3  
直接数字式合成(DDS)技术,是近几年来发展迅速的一种频率合成新技术。DDS具有输出相对带宽宽、频率转换时间短、频率分辨力高且输出相位连续、可产生宽带正交信号,易集成等优点。在通信、雷达、遥控遥测、电子对抗、电子扩频以及现代化的仪器仪表工业等许多电子领域显示出广泛的应用前景。本文介绍了直接数字式合成技术的特点及其应用情况,阐述了DDS的基本原理并对其在应用中的一些合成方法做了相互对比。  相似文献   

19.
航空电子设备自动化测试及关键技术研究   总被引:2,自引:1,他引:1  
在介绍航空电子设备自动测试技术的基础上 ,分析了航空电子设备自动化测试的关键技术 ,指出宽带微波系统、射频信号仿真和故障自动诊断是航空电子设备自动化测的关键技术。  相似文献   

20.
水声声管在低频水声测量中的应用十分广泛,不仅可以用来校准低频水声换能器,还可以用作水声材料及其构件的声学参数测量。随着矢量水听器研究工作的不断发展,在水声驻波声管中更加大了对质点振速的测量研究。在回顾了矢量水听器校准技术的发展历程和研究现状的基础上,对影响矢量水听器校准技术的因素进行了分析,同时给出了相应的研究成果,包括采用驻波管比较校准方法时,由于标准声压水听器和被测矢量水听器的置放方式引起的灵敏度校准结果高频失真,以及由于矢量水听器悬挂结构影响导致出现的灵敏度校准结果低频失真,并且对矢量水听器技术未来的发展方向进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号