首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gravitropism of protonemata of Pohlia nutans is described and compared with that of other mosses. In darkness, protonemata showed negative gravitropism. Under uniform illumination they grew radially over the substrate surface, whereas unilateral illumination induced positive phototropic growth. Gravitropism was coupled with starch synthesis and amyloplast formation. Protonematal gravitropic growth is more variable than the strict negative gravitropism of Ceratodon chloronema.  相似文献   

2.
The gravitropism of protonemata of Pohlia nutans is described and compared with that of other mosses. In darkness, protonemata showed negative gravitropism. Under uniform illumination they grew radially over the substrate surface, whereas unilateral illumination induced positive phototropic growth. Gravitropism was coupled with starch synthesis and amyloplast formation. Protonematal gravitropic growth is more variable than the strict negative gravitropism of Ceratodon chloronema.  相似文献   

3.
In order to achieve perfect positioning of their lamellae for spore dispersal, fruiting bodies of higher fungi rely on the omnipresent force gravity. Only accurate negatively gravitropic orientation of the fruiting body cap will guarantee successful reproduction. A spaceflight experiment during the STS-55 Spacelab mission in 1993 confirmed that the factor gravity is employed for spatial orientation. Most likely every hypha in the transition zone between the stipe and the cap region is capable of sensing gravity. Sensing presumably involves slight sedimentation of nuclei which subsequently causes deformation of the net-like arrangement of F-actin filament strands. Hyphal elongation is probably driven by hormone-controlled activation and redistribution of vesicle traffic and vesicle incorporation into the vacuoles and cell walls to subsequently cause increased water uptake and turgor pressure. Stipe bending is achieved by way of differential growth of the flanks of the upper-most stipe region. After reorientation to a horizontal position, elongation of the upper flank hyphae decreases 40% while elongation of the lower flank slightly increases. On the cellular level gravity-stimulated vesicle accumulation was observed in hyphae of the lower flank.  相似文献   

4.
The negative gravitropic response of cut flower stalks is a complex multistep process that requires the participation of various cellular components acting in succession or in parallel. The process was particularly characterized in snapdragon (Antirrhinum majus L.) spikes with regard to (1) gravity stimulus perception associated with amyloplast reorientation; (2) stimulus transduction mediated through differential changes in the level, action and related genes of auxin and ethylene and their possible interaction; (3) stimulus response associated with differential growth leading to stalk curvature; (4) involvement of cytosolic calcium and actin cytoskeleton. Results show that the gravity-induced amyloplast reorientation, differential over-expression of two early auxin responsive genes and asymmetrical distribution of free IAA are early events in the bending process. These precede the asymmetrical ethylene production and differential stem growth, which was derived from initial shrinkage of the upper stem side and a subsequent elongation of the lower stem side. Results obtained with various calcium- and cytoskeleton-related agents indicate that cytosolic calcium and actin filaments may play essential roles in gravitropism-related processes of cut flower stalks. Therefore, modulators of these two physiological mediators may serve as means for controlling any undesired gravitropic bending.  相似文献   

5.
Gravitropism of plant organs such as roots, stems and coleoptiles can be separated into four distinct phases: 1. perception (gravity sensing), 2. transduction of a signal into the target region and 3. the response (differential growth). This last reaction is followed by a straightening of the curved organ (4.). The perception of the gravitropic stimulus upon horizontal positioning of the organ (1.) occurs via amyloplasts that sediment within the statocytes. This conclusion is supported by our finding that submerged rice coleoptiles that lack sedimentable amyloplasts show no graviresponse. The mode of signal transduction (2.) from the statocytes to the peripheral cell layers is still unknown. Differential growth (3.) consists of a cessation of cell expansion on the upper side and an enhancement of elongation on the lower side of the organ. Based on the facts that the sturdy outer epidermal wall (OEW) constitutes the growth-controlling structure of the coleoptile and that growth-related osmiophilic particles accumulate on the upper OEW, it is concluded that the differential incorporation of wall material (presumably glycoproteins) is causally involved. During gravitropic bending, electron-dense particles ('wall-loosening capacity') accumulate on the growth-inhibited upper OEW. It is proposed that the autotropic straightening response, which is in part due to an acceleration of cell elongation on the curved upper side, may be attributable to an incorporation of the accumulated particles ('release of wall-loosening capacity'). This novel mechanism of autotropic re-bending and its implications for the Cholodny-Went hypothesis are discussed.  相似文献   

6.
Phototropism as well as gravitropism plays a role in the oriented growth of roots in flowering plants. In blue or white light, roots exhibit negative phototropism, but red light induces positive phototropism in Arabidopsis roots. Phytochrome A (phyA) and phyB mediate the positive red-light-based photoresponse in roots since single mutants (and the double phyAB mutant) were severely impaired in this response. In blue-light-based negative phototropism, phyA and phyAB (but not phyB) were inhibited in the response relative to the WT. In root gravitropism, phyB and phyAB (but not phyA) were inhibited in the response compared to the WT. The differences observed in tropistic responses were not due to growth limitations since the growth rates among all the mutants tested were not significantly different from that of the WT. Thus, our study shows that the blue-light and red-light systems interact in roots and that phytochrome plays a key role in plant development by integrating multiple environmental stimuli.  相似文献   

7.
Time-resolved radiation exposure measurements inside the crew compartment have been made during recent Shuttle missions with the USAF Radiation Monitoring Equipment-III (RME-III), a portable four-channel tissue equivalent proportional counter. Results from the first six missions are presented and discussed. The missions had orbital inclinations ranging from 28.5 degrees to 57 degrees, and altitudes from 200-600 km. Dose equivalent rates ranged from 40-5300 micro Sv/dy. The RME-III measurements are in good agreement with other dosimetry measurements made aboard the vehicle. Measurements indicate that medium- and high-LET particles contribute less than 2% of the particle fluence for all missions, but up to 50% of the dose equivalent, depending on the spacecraft's altitude and orbital inclination. Iso-dose rate contours have been developed from measurements made during the STS-28 mission. The drift rate of the South Atlantic Anomaly (SAA) is estimated to be 0.49 degrees W/yr and 0.12 degrees N/yr. The calculated trapped proton and Galactic Cosmic Radiation (GCR) dose for the STS-28 mission were significantly lower than the measured values.  相似文献   

8.
One main function of the connective tissues is to provide cells with a mechanically resistant attachment support required for survival, division and differentiation. All cells contain membrane-anchored attachment proteins able to recognize specific chemical motifs in the extracellular macromolecules forming the supporting scaffold, made of various types of collagen, adhesive glycoproteins, elastin, proteoglycans, etc... These cell-matrix interactions are mainly mediated by receptors of the integrins family, heterodimeric molecules made of an extracellular domain connected through a transmembrane sequence to an intracytoplasmic tail. Upon recognition of the extracellular ligand, the clustering and activation of the integrins result in the recruitment of a complex of proteins and formation of the focal adhesion plaque, containing both cytoskeletal and catalytic signaling molecules. Activation results in polymerization of actin and formation of stress fibers. These structures establish a physical link between the extracellular matrix components and the cytoskeleton through the integrins providing a continuous path acting as a mechanotransducer. This connection is used by the cells to perform their mechanical functions as adhesion, migration and traction. In vitro experimental models using fibroblasts in a collagen gel demonstrate that cells are in mechanical equilibrium with their support which regulates their replicative and biosynthetic phenotype. The present review discusses the molecular structures operating in the transmission of the mechanical messages from the support to the connective tissue cells, and their effect on the cellular machinery. We present arguments for investigating these mechanisms in understanding the perception of reduced gravity and the resulting reaction leading to microgravity induced pathologies.  相似文献   

9.
Results obtained from nine experiments performed onboard Russian biosatellites have shown that microgravity promotes tissue regeneration in the newt, Pleurodeles waltl. The effect has been reproduced in all flights and on a clinostat as well for eye tissues (lens and retina), limbs and tail. The effect was demonstrated in 1.5- to 2-fold increase in cell proliferation in the early stages of regeneration in space flight. Animals "flown" intact and operated after flight regenerated faster than control ones and showed long-lasting micro-"g" effect. The most recent experiment flew aboard the Bion-11 biosatellite. This test was performed for study on microgravity effect on neural retina regeneration after optic nerve lesioning in the newt. Obtained results confirmed our previous information about intensification of regenerative processes in detached neural retina in urodela exposed to simulated weightlessness (Grigoryan et al., 1998). In particular, we found the increase and activation of cell populations participating in neural retina restoration and maintenance of retinal structure. Our findings suggest that promoting effect of microgravity upon regeneration could be influenced by several factors, largely influenced by a response of the whole organism to changed gravity vector. We hypothesized the synthesis of the specific range of stress proteins induced by micro-"g" and their regulative role in cell proliferation. Such a hypothesis for the existence of "altered gravity stress proteins" is discussed.  相似文献   

10.
The changed gravity conditions do not prevent the process of cell dedifferentiation and formation of callus. Yet, callus grown on the clinostat and in space differs from the control one: its consistence is denser, occurence of meristematic centres is less frequent and it shows a reduced proliferative activity of cells. Average size of cell and nuclei area in the test variants is lower than in the control.  相似文献   

11.
Today, the tools are in our hands to enable us to travel away from our home planet and become citizens of the solar system. Even now, we are seriously beginning to develop the robust infrastructure that will make the 21st century the Century of Space Travel. But this bold step must be taken with due concern for the health, safety and wellbeing of future space explorers. Our long experience with space biomedical research convinces us that, if we are to deal effectively with the medical and biomedical issues of exploration, then dramatic and bold steps are also necessary in this field. We can no longer treat the human body as if it were composed of muscles, bones, heart and brain acting independently. Instead, we must lead the effort to develop a fully integrated view of the body, with all parts connected and fully interacting in a realistic way. This paper will present the status of current (2000) plans by the National Space Biomedical Research Institute to initiate research in this area of integrative physiology and medicine. Specifically, three example projects are discussed as potential stepping stones towards the ultimate goal of producing a digital human. These projects relate to developing a functional model of the human musculoskeletal system and the heart.  相似文献   

12.
Shuttle flight, sounding rocket flight, and parabolic flight experiments demonstrate the formation of bilayer membrane vesicles (liposomes) in reduced gravity, following the dilution of detergent from detergent-phospholipid mixed micelles. The reduction in detergent concentration initiates assembly of bilayer membrane sheets, which are sensitive to solution disturbances. An increase in disturbances by forced dilution results in small diameter liposomes (< 150 nm), in both ground and flight samples. In the absence of forced dilution, liposomes remain small at 1-g, but exhibit much larger diameters at 0-g (1000-2000 nm). Our spaceflight data reveal that membrane assembly and vesiculation are strongly influenced by gravity-induced solution disturbances (e.g., convection currents), which limit vesicle diameter.  相似文献   

13.
The C.E.B.A.S.-Minimodule, a closed aquatic ecosystem integrated into a middeck locker and consisting of a Zoological (animal tanks), a Botanical (plant bioreactor), a Microbial (bacteria filter) and an Electronic Component (data acquisition/control system) was flown on the STS-89 spaceshuttle mission in January 1998 for 9 days. Preflight the plant bioreactor was loaded with 53 g of Ceratophyllum demersum (coontail) and the animal tanks with 4 adult pregnant females of the fish, Xiphophorus helleri (sword-tails), 200 juveniles of the same species less than 1 week of age, 38 large and 30 juvenile Biomphalaria glabrata water snails. The filter compartment was filled with 200 g of lava grain inoculated with laboratory strains of ammonia-oxidizing bacteria. A ground reference was undertaken with the same biological setup with a delay of 4 d. After an adaptation period of 5 d the system was closed and integrated into the spaceshuttle one day before launch. Video recordings of the animals were automatically taken for 10 minutes in 2-hour periods; the tapes were changed daily by the astronauts. The chemical and physical data for the aquatic system were within the expected range and were closely comparable in comparison to the ground reference. After 9 d under space conditions, the plant biomass increased to 117 g. The plants were all found in very good condition. All 4 adult female fish were retrieved in a good physiological condition. The juvenile fishes had a survival rate of about 33%. Almost 97% of the snails had survived and produced more than 250 neonates and 40 spawning packs. All samples were distributed according to a defined schedule and satisfied all scientific needs of the involved 12 principal investigators. This was the first successful spaceflight of an artificial aquatic ecosystem containing vertebrates, invertebrates, higher plants and microorganisms self-sustained by its inhabitants only. C.E.B.A.S. in a modified form and biological setup is a promising candidate for the early space station utilization as a first midterm experiment.  相似文献   

14.
To study the effects of weightlessness on mouse fetal long bone rudiment growth and mineralization we have developed a tissue culture system for the Biorack facility of Spacelab. The technique uses standard liquid tissue culture medium, supplemented with NA-beta-glycerophosphate, confined in gas permeable polyethylene bags mounted inside ESA Biorack Type I experiment containers. The containers can be flushed with an air/5% CO2 gas mixture necessary for the physiological bicarbonate buffer used. Small amounts of fluid can be introduced at the beginning (e.g. radioactive labels for incorporation studies) or at the end of the experiment (fixatives). A certain form of mechanical stimulation (continuous compression) can be used to counteract the, possibly, adverse effect of microgravity. Using 16 day old metatarsals the in vitro calcification process under microgravity conditions can be studied for a 4 day period.  相似文献   

15.
The hypothesis on exogenous origin of organic matter on the early Earth is strongly supported by the detection of a large variety of organic compounds (including amino acids and nucleobases) in carbonaceous chondrites. Whether such complex species can be successively delivered by other space bodies (comets, asteroids and interplanetary dust particles) is unclear and depends primarily on capability of the biomolecules to survive high temperatures during atmospheric deceleration and impacts to the terrestrial surface. Recent simulation experiments on amino acid and nucleic acid base pyrolysis under oxygen-free atmosphere demonstrated that simple representatives of these (considered thermally unstable) compounds can survive at 1-10% level a rapid heating at 500-600 degrees C. In the present work, we report on new data on the pyrolysis of amino acids and their homopolymers and discuss implications of their thermal behavior for extraterrestrial delivery.  相似文献   

16.
The paper reviews radiation exposures recorded during space flights of the US and USSR. Most of the data are from manned missions and include discussion of absorbed dose and dose rates as a function of parameters such as altitude, inclination, spacecraft type and shielding. Preliminary data exist on the neutron and HZE-particle component, as well as the LET spectra. For low Earth-orbit missions, the dose encountered is strongly altitude-dependent, with a weaker dependence upon inclination. The doses range from about 6 millirad per day for the Space Transportation System No. 3 flight to about 90 mrad per day for Skylab. The effective quality factor (QF) for the near-Earth orbits and free space has been estimated to be about 1.5 and about 5.5 respectively. Complete shielding from the galactic cosmic rays does not appear practical because of spacecraft weight limitations.  相似文献   

17.
The Mars mission differs from near-Earth manned space flights by radiation environment and duration. The importance of effective using the weight of the spacecraft increases greatly because all the necessary things for the mission must be included in its starting weight. For this reason the development of optimal systems of radiation safety ensuring (RSES) acquires especial importance. It is the result of sharp change of radiation environment in the interplanetary space as compared to the one in the near-Earth orbits and significant increase of the interplanetary flight duration. The demand of a harder limitation of unfavorable factors effects should lead to radiation safety (RS) standards hardening. The main principles of ensuring the RS of the Mars mission (optimizing, radiation risk, ALARA) and the conception of RSES, developed on the basis of the described approach and the experience obtained during orbital flights are presented in the report. The problems that can impede the ensuring of the crew members' RS are also given here.  相似文献   

18.
Functional weightlessness during clinorotation of cell suspensions.   总被引:3,自引:0,他引:3  
A clinostat is a device often used in gravitational biology studies. Selecting an appropriate speed of rotation, however, is a frequently debated topic, particularly for suspended cells. In an attempt to define the necessary criteria for determining an acceptable revolution speed, the primary forces governing particle behavior during clinorotation--gravity, diffusion and centrifugation--were mathematically assessed. In support of the theoretical exercise, bacterial growth experiments indicated that results obtained using a clinostat followed trends resembling previous space flight results. It is suspected that this is due, in part at least, to similarly altered external transport processes in each environment.  相似文献   

19.
Since STS-26, three large solar events have occurred during Shuttle missions; a geomagnetic storm during STS-29 and solar particle events (SPEs) during STS-28 and -34. The maximum dose to a crew attributed to an SPE was estimated to be 30 microGy (70 microSv). Time-resolved dosimetry measurements of the SPE dose during STS-28 were made using the Air Force Radiation Monitoring Equipment (RME)-III. Comparison of calculated and measured dose demonstrated a discrepancy, possibly a result of deficiencies in the geomagnetic cutoff model used. This experience demonstrates that dose from an SPE is strongly dependent on numerous factors such as orbit inclination, SPE start time, spectral parameters and geomagnetic field conditions; the exact combination of these factors is fortuitous. New sources of data and procedures are being investigated, including real-time tracking of auroral oval positions or determination of particle cutoff latitudes, for incorporation into operational Shuttle radiation support practices.  相似文献   

20.
Developmental biology studies, using gastrula-arrested cysts of the brine shrimp Artemia franciscana, were conducted during two flights of the space shuttle Atlantis (missions STS-37 and STS-43) in 1991. Dehydrated cysts were activated, on orbit, by addition of salt water to the cysts, and then development was terminated by the addition of fixative. Development took place in 5 ml syringes, connected by tubing to activation syringes, containing salt water, and termination syringes, containing fixative. Comparison of space results with simultaneous ground control experiments showed that equivalent percentages of naupliar larvae hatched in the syringes (40%). Thus, reactivation of development, completion of embryogenesis, emergence and hatching took place, during spaceflight, without recognizable alteration in numbers of larvae produced. Post-hatching larval development was studied in experiments where development was terminated, by introduction of fixative, 2 days, 4 days, and 8 days after reinitiation of development. During spaceflight, successive larval instars or stages, interrupted by molts, occurred, generating brine shrimp at appropriate larval instars. Naupliar larvae possessed the single naupliar eye, and development of the lateral pair of adult eyes also took place in space. Transmission electron microscopy revealed extensive differentiation, including skeletal muscle and gut endoderm, as well as the eye tissues. These studies demonstrate the potential value of Artemia for developmental biology studies during spaceflight, and show that extensive degrees of development can take place in this microgravity environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号