首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exact knowledge of the angle of Earth rotation UT1 with respect to coordinated time UTC, dUT1, is essential for all space geodetic techniques. The only technique which is capable of determining dUT1 is Very Long Baseline Interferometry (VLBI). So-called Intensive VLBI sessions are performed on a daily basis in order to provide dUT1. Due to the reduced geometry of Intensive sessions, there is however no possibility to estimate tropospheric gradients from the observations, which limits the accuracy of the resulting dUT1 significantly. This paper deals with introducing the information on azimuthal asymmetry from external sources, thus attempting to improve the dUT1 estimates. We use the discrete horizontal gradients GRAD and the empirical horizontal gradients GPT3 as well as ray-traced delays from the VieVS ray-tracer for this purpose, which can all be downloaded from the VMF server of TU Wien (http://vmf.geo.tuwien.ac.at). The results show that this strategy indeed improves the dUT1 estimates when compared to reference values from multi-station VLBI stations, namely by up to 15%. When converted to length-of-day (LOD), the estimates can be compared to LODs from global analyses of Global Navigation Satellite Systems (GNSS). Here, the improvement amounts to up to 7% compared to neglecting a priori information on azimuthal asymmetry.  相似文献   

2.
In its function as an ITRS Combination Centre, DGFI is in charge with the computation of an ITRF2008 solution. The computation methodology of DGFI is based on the combination of datum-free normal equations (weekly or session data sets, respectively) of station positions and Earth orientation parameters (EOP) from the geodetic space techniques DORIS, GPS, SLR and VLBI. In this paper we focus on the DORIS part within the ITRF2008 computations. We present results obtained from the analysis of the DORIS time series for station positions, network translation and scale parameters, as well as for the terrestrial pole coordinates. The submissions to ITRF2008 benefit from improved analysis strategies of the seven contributing IDS analysis centres and from a combination of the weekly solutions of station positions and polar motion. The results show an improvement by a factor of two compared to past DORIS data submitted to ITRF2005, which has been evaluated by investigating the repeatabilities of position time series. The DORIS position time series were analysed w.r.t. discontinuities and other non-linear effects such as seasonal variations. About 40 discontinuities have been identified which have been compared with the results of an earlier study. Within the inter-technique combination we focus on the DORIS contribution to the integration of the different space geodetic observations and on a comparison of the geodetic local ties with the space geodetic solutions. Results are given for the 41 co-location sites between DORIS and GPS.  相似文献   

3.
针对卫星导航所需的高精度地球定向参数(EOP)中的UT1-UTC预报问题,提出了基于双差分LS+AR的UT1-UTC参数预报方法。对UT1-UTC观测数据进行跳秒检测、固体地球带谐潮汐项改正,然后对改正后的UT1-UTC数据进行双差分处理,增强数据平稳性;采用最小二乘拟合(LS)与自回归(AR)分析方法对差分处理后的数据进行分析与预报;对预报结果进行逆差分处理与潮汐项改正外推、跳秒恢复,获取高精度的UT1-UTC预报值。通过与国际EOP_PCC预报结果对比表明,UT1-UTC短期预报精度与EOP_PCC较优的预报精度相当,其中1天UT1-UTC预报精度优于0.03ms,优于EOP_PCC预报结果。介绍了北京航天飞行控制中心的UT1-UTC每日例行预报情况。  相似文献   

4.
Very Long Baseline Interferometry (VLBI) allows to monitor universal time (UT1) by conducting regular international experiments. Such dedicated observation networks are equipped with different hardware components, which require different processing strategies when the data are correlated. As the timing units at each stations are usually offset with respect to universal time (UTC) this effect should be considered during correlation processing. Thus, it is investigated how neglecting of these offsets theoretically impacts the estimation of UT1. Three different strategies for the proper handling of the timing offset will be discussed and their advantages/drawbacks will be pointed out. Moreover, it is studied how neglecting of these timing offsets affects UT1 time-series and how such a missing correction can be applied a posteriori. Although the discussed effect is for most of the UT1 experiments smaller than the formal error of the estimates, it is important to consider station clock offsets properly in next-generation VLBI systems, which are expected to improve accuracy of results by about one order of magnitude.  相似文献   

5.
Due to the influence of various errors, the orbital uncertainty propagation of artificial celestial objects while orbit prediction is required, especially in some applications such as conjunction analysis. In the orbital error propagation of artificial celestial objects in low Earth orbits (LEOs), atmospheric density uncertainty is one of the important factors that require special attention. In this paper, on the basis of considering the uncertainties of position and velocity, the atmospheric density uncertainty is also taken into account to further investigate the orbital error propagation of artificial celestial objects in LEOs. Artificial intelligence algorithms are introduced, the MC Dropout neural network and the heteroscedastic loss function are used to realize the correction of the empirical atmospheric density model, as well as to provide the quantification of model uncertainty and input uncertainty for the corrected atmospheric densities. It is shown that the neural network we built achieves good results in atmospheric density correction, and the uncertainty quantization obtained from the neural network is also reasonable. Moreover, using the Gaussian mixture model - unscented transform (GMM-UT) method, the atmospheric density uncertainty is taken into account in the orbital uncertainty propagation, by adding a sampled random term to the corrected atmospheric density when calculating atmospheric density. The feasibility of the GMM-UT method considering atmospheric density uncertainty is proved by the further comparison of abundant sampling points and GMM-UT results (with and without considering atmospheric density uncertainty).  相似文献   

6.
Tropospheric delay is one of the major sources of error in VLBI (Very Long Baseline Interferometry) analysis. The principal component of this error can be accurately computed through reliable surface pressure data —hydrostatic delay— yet there is also a small but volatile component —wet delay— which is difficult to be modelled a priori. In VLBI analysis, troposphere delay is typically modelled in the theoretical delays using Zenith Hydrostatic Delays (ZHD) and a dry mapping function. Zenith Wet Delay (ZWD) is not modelled but estimated in the analysis process. This work studies inter alia the impact of including external GNSS estimates to model a priori ZWD in VLBI analysis, as well as other models of a priori ZWD.In a first stage, two different sources of GNSS troposphere products are compared to VLBI troposphere estimates in a period of 5 years. The solution with the best agreement to VLBI results is injected in the VLBI analysis as a priori ZWD value and is compared to other options to model a priori ZWD. The dataset used for this empirical analysis consists of the six CONT campaigns.It has been found that modelling a priori ZWD has no significant impact either on baseline length and coordinates repeatabilities. Nevertheless, modelling a priori ZWD can change the magnitude of the estimated coordinates a few millimeters in the up component with respect to the non-modelling approach. In addition, the influence of a priori ZWD on Earth Orientation Parameters (EOP) and troposphere estimates —Zenith Total Delays (ZTD) and gradients—has also been analysed, resulting in a small but significant impact on both geodetic products.  相似文献   

7.
用于太阳系天体VLBI观测的时延模型   总被引:2,自引:0,他引:2  
VLBI观测技术可以用于对深空航天器的跟踪定位以及测速观测.这类近距离天体发出的射电信号波前是球面波.为此,本文提出了一个1ps精度下近距离射电天体地面VLBI观测时间延迟模型.  相似文献   

8.
The APOD (Atmospheric density detection and Precise Orbit Determination) is the first LEO (Low Earth Orbit) satellite in orbit co-located with a dual-frequency GNSS (GPS/BD) receiver, an SLR reflector, and a VLBI X/S dual band beacon. From the overlap statistics between consecutive solution arcs and the independent validation by SLR measurements, the orbit position deviation was below 10?cm before the on-board GNSS receiver got partially operational. In this paper, the focus is on the VLBI observations to the LEO satellite from multiple geodetic VLBI radio telescopes, since this is the first implementation of a dedicated VLBI transmitter in low Earth orbit. The practical problems of tracking a fast moving spacecraft with current VLBI ground infrastructure were solved and strong interferometric fringes were obtained by cross-correlation of APOD carrier and DOR (Differential One-way Ranging) signals. The precision in X-band time delay derived from 0.1?s integration time of the correlator output is on the level of 0.1?ns. The APOD observations demonstrate encouraging prospects of co-location of multiple space geodetic techniques in space, as a first prototype.  相似文献   

9.
The history of Very Long Baseline Interferometry (VLBI) observations has been characterized predominantly by an ongoing quest for increasingly high resolution and sensitivity. VLBI monitoring of relatively large samples of Active Galactic Nuclei (AGNs) with uniform quality and linear polarization sensitivity are now available at the moderately high frequencies of 15 and 43 GHz. This has enabled considerable advances in our understanding of the relativistic jets of AGNs, but gaps in the available observational material remain, which must be addressed in future VLBI polarization observations. Linear polarization observations at frequencies above 43 GHz remain non-routine, and the availability of multi-frequency and circular polarization measurements is still limited. It is of interest both to push inward toward the jet base and to study details of the jets themselves on parsec scales, such as magnetic field structures along and across the jets, which are intrinsically related to their formation, launching and propagation. Requirements for future VLBI polarization observations are considered, highlighting the key role that can be played by space VLBI observations. Unique opportunities are offered by relatively low-frequency space VLBI observations that are sensitive to effects such as Faraday rotation, opacity, and low-frequency absorption.  相似文献   

10.
地球是月球上可视半径最大的天体,且在天球上运动范围较小,不存在升降现象.当月球车在月球对地面区域活动时,利用地球敏感器对地球成像可实现月球车长期自主天文导航.地球图像地心位置提取是利用地球敏感器进行天文导航的关键技术之一,直接决定了地球敏感器的观测精度.本文通过研究地球敏感器镜头投影模型分析地球成像规律,提出一种不受地相变化约束的地球敏感器图像地心位置提取算法,采用取半搜索法和循环搜索法两步实现地球真实边缘线的充分筛选,并基于此拟合地心位置.半物理仿真实验校验结果表明,本算法能针对不同地相图像有效提取地球中心,外符合平均精度约为9.78"~16.68",在实验条件随机改变的情况下,地心位置外符合精度标准差互差最大不超过0.98".   相似文献   

11.
In this paper we present results assessing the role of Very Long Baseline Interferometry (VLBI) tracking data through precision orbit determination (POD) during the check-out phase for Chang’E-1, and the lunar gravity field solution CEGM-01 based on the orbital tracking data acquired during the nominal phase of the mission. The POD of Chang’E-1 is performed using S-band two-way Range and Range Rate (R&RR) data, together with VLBI delay and delay rate observations. The role of the VLBI data in the POD of Chang’E-1 is analyzed, and the resulting orbital accuracies are estimated for different solution strategies. The final orbital accuracies proved that the VLBI tracking data can improve the Chang’E-1 POD significantly. Consequently, CEGM-01 based on six-month tracking data during Chang’E-1 nominal mission phase is presented, and the accuracy of the model is assessed by means of the gravity field power spectrum, admittance and coherence between gravity and topography, lunar surface gravity anomaly and POD for both Chang’E-1 and Lunar Prospector (LP). Our analysis indicates that CEGM-01 has significant improvements over a prior model (i.e. GLGM-2), and shows the potential of Chang’E-1 tracking data in high resolution lunar gravity field model solution by combining with SELENE and LP tracking data.  相似文献   

12.
The International Terrestrial Reference Frame (ITRF), as a realization of the International Terrestrial Reference System (ITRS), is represented by a set of station positions and linear velocities. They are intended to be used as regularized coordinates to which some corrections should be added to access instantaneous coordinates. The latest ITRS realization is the ITRF2005, which has integrated time series of station positions to form long-term solutions for the four space geodetic techniques. Currently, a purely linear model is used to parameterize station displacements in the estimation process, plus occasional discontinuities in case of earthquakes or equipment changes. However the input data have been derived without applying surface loading models and so surface loading effects are supposed to be embedded in the coordinates as measured quantities. We evaluate the effect of applying a posteriori loading corrections, which include the effect of atmospheric, non-tidal ocean, and continental water loading, to time series of positions estimated from Satellite Laser Ranging (SLR), Very Long Baseline Interferometry (VLBI), and Global Positioning System (GPS) data. We notice that they reduce about 50% or more of the annual signals in the translation and scale parameter time series of the SLR and VLBI techniques, except in SLR Z translation. In general, the estimated secular frame definition is negligibly affected and estimated positions and velocities are not significantly modified for stations that have accumulated a large number of observations. A multi-technique combination of such derived frames allows concluding that, for some cases, loading model corrections might degrade co-located station coordinates almost as much as they benefit them. However, most significant improvement of the estimated secular coordinates is observed for stations with less than 100 estimated positions as demonstrated with a multi-technique combination.  相似文献   

13.
The high precision of estimated station coordinates and Earth rotation parameters (ERP) obtained from satellite geodetic techniques is based on the precise determination of the satellite orbit. This paper focuses on the analysis of the impact of different orbit parameterizations on the accuracy of station coordinates and the ERPs derived from DORIS observations. In a series of experiments the DORIS data from the complete year 2011 were processed with different orbit model settings. First, the impact of precise modeling of the non-conservative forces on geodetic parameters was compared with results obtained with an empirical-stochastic modeling approach. Second, the temporal spacing of drag scaling parameters was tested. Third, the impact of estimating once-per-revolution harmonic accelerations in cross-track direction was analyzed. And fourth, two different approaches for solar radiation pressure (SRP) handling were compared, namely adjusting SRP scaling parameter or fixing it on pre-defined values.  相似文献   

14.
最优插值(Optimal Interpolation, OI)同化是一种利用最小二乘法使分析误差方差极小化的方法. 提出并建立了一种电离层一维剖面最优插值的同化方法. 借鉴及参考气象的同化方法, 基于最优插值方法, 采用厦门电离层垂测仪2009年6至8月观测数据和一维电离层理论模式(IGGCAS1D)背景值来构建误差协方差, 并进行同化试验和分析预报. 结果表明方法可靠, 没有出现同化时背景数据与观测数据偏离较大的问题, 同化后所得结果与观测数据符合较好.   相似文献   

15.
Effective Angular Momentum (EAM) functions obtained from global numerical simulations of atmosphere, ocean, and land surface dynamics are routinely processed by the Earth System Modelling group at Deutsches GeoForschungsZentrum. EAM functions are available since January 1976 with up to 3?h temporal resolution. Additionally, 6?days-long EAM forecasts are routinely published every day. Based on hindcast experiments with 305 individual predictions distributed over 15?months, we demonstrate that EAM forecasts improve the prediction accuracy of the Earth Orientation Parameters at all forecast horizons between 1 and 6?days. At day 6, prediction accuracy improves down to 1.76 mas for the terrestrial pole offset, and 2.6 mas for ΔUT1, which correspond to an accuracy increase of about 41% over predictions published in Bulletin A by the International Earth Rotation and Reference System Service.  相似文献   

16.
We present the analysis of the radio observations of December 1, 2004 from 07:00 UT to 07:40 UT in the 1.100–1.340 GHz band by Solar Broadband Radio Dynamic Spectrometer (SBRS) in Huairou Station. There are three groups of radio fine structures during the impulsive phase of this flare denoted by N1, Z2, and Z3. N1 has several emission lines with mixed fast and slow frequency drift rate which may reflect the conditions of flare loop and fast flows out from reconnection site; Z2 and Z3 are zebra patterns. The radio observations combined with hard X-ray and other observations show that the fine structures are connected with energetic particles. The information about magnetic field and energetic particle during the burst are also estimated based on our model.  相似文献   

17.
Extracting the group and phase delays of interferometric observations produced in the Very Long Baseline Interferometry (VLBI) measurement concept requires a special fringe fitting and delay search algorithm for the recorded bandwidth. While fringe fitting is in use routinely for several megahertz wide channels in geodetic and astrometric VLBI with quasar observations, fringe fitting for artificial tones of very small bandwidth of artificial signals for Differential One-way Ranging (DOR) requires a different way of handling. In a project called Observing the Chang’E-3 Lander with VLBI (OCEL), the DOR tones emitted by the Chang’E-3 lander were observed in a standard geodetic VLBI mode with 8 or 4?MHz wide channels to maintain compatibility with the corresponding quasar observations. For these observations, we modified the existing fringe fitting program of the Haystack Observatory Processing Software (HOPS), fourfit, to properly handle narrow band DOR tones. The main motivations are that through this modification, the data of quasars and artificial radio sources can be processed in the existing geodetic analysis pipeline, and that the algorithm can be used for similar projects as well. In this paper, we describe the algorithm and show that the new algorithm produces much more reliable group delay results than using the standard fourfit algorithm. This is done by a simulation test and in particular by processing of real observations. It is shown that in many cases, systematic deviations of several nanoseconds, which are seen with the standard fourfit algorithm, can be avoided. The ultimate benefit of the new procedure is demonstrated by reducing the errors in delay triangle closures by at least a factor of 3, which, in the OCEL case, is from ~300 to ~100?ps.  相似文献   

18.
The Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect is a proposed explanation for the observed rotation behavior of inactive satellites in Earth orbit. This paper further explores the YORP effect for highly asymmetric inactive satellites. Satellite models are developed to represent the GOES 8 and GOES 10 satellites, both of which are currently inactive in geosynchronous Earth orbit (GEO). A simple satellite model for the GOES 8 satellite is used to analyze the short period variations of the angular velocity and obliquity as a result of the YORP effect. A more complex model for the rotational dynamics of the GOES 8 and GOES 10 satellites are developed to probe their sensitivity and to match observed spin periods and states of these satellites. The simulated rotation periods are compared to observations for both satellites. The comparison between YORP theory and observed rotation rates for both satellites show that the YORP effect could be the cause for the observed rotational behavior. The YORP model also predicts a novel state for the GOES 8 satellite, namely that it could periodically fall into a tumbling rotation state. Recent observations of this satellite are consistent with this prediction.  相似文献   

19.
WIND飞船在2010年11月15日观测到两个临近的脉冲型太阳能量电子事件, 这两个事件在1AU处呈现出不同类型的通量-时间曲线. 事件一的通量表现出快速上升及快速下降的特性; 事件二则表现为缓慢上升, 更缓慢下降, 事件二的持续时间是事件一的5~17倍. 以往的解释认为事 件二中的电子在行星际受到了更强的散射. 本文引入等腰三角形的释放函数并 求解电报方程, 利用得到的解对1AU处的观测进行拟合. 根据最佳拟合结果 反推两事件在太阳上的释放函数和在行星际传播的平均自由程, 发现造成两事 件在1AU处能谱和通量-时间曲线形状不同的原因是太阳上电子 加速过程的不同而非行星际散射. 结合SOHO卫星的白光观测, 发现两事件可能 与一个CME (日冕物质抛射)相关, 并进一步推测了这两个太阳电子事件可能 的加速图像.   相似文献   

20.
A crucial part of a space mission for very-long baseline interferometery (VLBI), which is the technique capable of providing the highest resolution images in astronomy, is orbit determination of the mission’s space radio telescope(s). In order to successfully detect interference fringes that result from correlation of the signals recorded by a ground-based and a space-borne radio telescope, the propagation delays experienced in the near-Earth space by radio waves emitted by the source and the relativity effects on each telescope’s clock need to be evaluated, which requires accurate knowledge of position and velocity of the space radio telescope. In this paper we describe our approach to orbit determination (OD) of the RadioAstron spacecraft of the RadioAstron space-VLBI mission. Determining RadioAstron’s orbit is complicated due to several factors: strong solar radiation pressure, a highly eccentric orbit, and frequent orbit perturbations caused by the attitude control system. We show that in order to maintain the OD accuracy required for processing space-VLBI observations at cm-wavelengths it is required to take into account the additional data on thruster firings, reaction wheel rotation rates, and attitude of the spacecraft. We also investigate into using the unique orbit data available only for a space-VLBI spacecraft, i.e. the residual delays and delay rates that result from VLBI data processing, as a means to evaluate the achieved OD accuracy. We present the results of the first experience of OD accuracy evaluation of this kind, using more than 5000 residual values obtained as a result of space-VLBI observations performed over 7 years of the RadioAstron mission operations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号