首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Differential Code Bias (DCB) is an essential correction that must be provided to the Global Navigation Satellite System (GNSS) users for precise position determination. With the continuous deployment of Low Earth Orbit (LEO) satellites, DCB estimation using observations from GNSS receivers onboard the LEO satellites is drawing increasing interests in order to meet the growing demands on high-quality DCB products from LEO-based applications, such as LEO-based GNSS signal augmentation and space weather research. Previous studies on LEO-based DCB estimation are usually using the geometry-free combination of GNSS observations, and it may suffer from significant leveling errors due to non-zero mean of multipath errors and short-term variations of receiver code and phase biases. In this study, we utilize the uncombined Precise Point Positioning (PPP) model for LEO DCB estimation. The models for uncombined PPP-based LEO DCB estimation are presented and GPS observations acquired from receivers onboard three identical Swarm satellites from February 1 to 28, 2019 are used for the validation. The results show that the average Root Mean Square errors (RMS) of the GPS satellite DCBs estimated with onboard data from each of the three Swarm satellites using the uncombined PPP model are less than 0.18 ns when compared to the GPS satellite DCBs obtained from IGS final daily Global Ionospheric Map (GIM) products. Meanwhile, the corresponding average RMS of GPS satellite DCBs estimated with the conventional geometry-free model are 0.290, 0.210, 0.281 ns, respectively, which are significantly larger than those obtained with the uncombined PPP model. It is also noted that the estimated GPS satellite DCBs by Swarm A and C satellites are highly correlated, likely attributed to their similar orbit type and space environment. On the other hand, the Swarm receiver DCBs estimated with uncombined PPP model, with Standard Deviation (STD) of 0.065, 0.037 and 0.071 ns, are more stable than those obtained from the official Swarm Level 2 products with corresponding STD values of 0.115, 0.101, and 0.109 ns, respectively. The above indicates that high-quality DCB products can be estimated based on uncombined PPP with LEO onboard observations.  相似文献   

2.
The devastating Sumatra tsunami in 2004 demonstrated the need for a tsunami early warning system in the Indian Ocean. Such a system has been installed within the German-Indonesian Tsunami Early Warning System (GITEWS) project. Tsunamis are a global phenomenon and for global observations satellites are predestined. Within the GITEWS project a feasibility study on a future tsunami detection system from space has therefore been carried out. The Global Navigation Satellite System Reflectometry (GNSS-R) is an innovative way of using GNSS signals for remote sensing. It uses ocean reflected GNSS signals for sea surface altimetry. With a dedicated Low Earth Orbit (LEO) constellation of satellites equipped with GNSS-R receivers, densely spaced sea surface height measurements could be established to detect tsunamis. Some general considerations on the geometry between LEO and GNSS are made in this simulation study. It exemplary analyzes the detection performance of a GNSS-R constellation at 900 km altitude and 60° inclination angle when applied to the Sumatra tsunami as it occurred in 2004. GPS is assumed as signal source and the combination with GLONASS and Galileo signals is investigated. It can be demonstrated, that the combination of GPS and Galileo is advantageous for constellations with few satellites while the combination with GLONASS is preferable for constellations with many satellites. If all three GNSS are combined, the best detection performance can be expected for all scenarios considered. In this case an 18 satellite constellation will detect the Sumatra tsunami within 17 min with certainty, while it takes 53 min if only GPS is considered.  相似文献   

3.
风云三号C星GNOS北斗掩星电离层探测初步结果   总被引:2,自引:1,他引:2  
利用风云三号卫星C星GNOS掩星探测仪电离层数据,分析了2013年10月FY-3C GNOS探测的北斗掩星电离层廓线分布,将2013年10月1日至2015年10月10日期间FY-3C GNOS观测的F2层峰值电子密度(NmF2)与地面电离层测高仪观测结果进行对比,验证了FY-3C GNOS北斗电离层掩星的探测精度.结果表明,FY3-C GNOS北斗电离层掩星与电离层测高仪探测的NmF2数据相关系数为0.96,平均偏差为10.21%,标准差为19.61%.在不同情况下其数据精度有如下特征:白天精度高于夜晚;夏季精度高于分季,分季精度高于冬季;中纬地区精度高于低纬地区,低纬地区精度高于高纬地区; BDS倾斜同步轨道(IGSO)卫星精度高于同步轨道(GEO)卫星和中轨道(MEO)卫星.FY-3C GNOS北斗电离层掩星与国际上其他掩星电离层数据精度的一致性对GNSS掩星探测资料的综合利用具有重大意义.   相似文献   

4.
Geodetic time and frequency transfer (TFT) consists in a comprehensive modeling of code and carrier phase observations from Global Navigation Satellite System (GNSS) in order to determine the synchronization errors between two remote clocks connected to GNSS receivers. Using either common view (CV), or Precise Point Positioning (PPP), current GNSS time transfer uses only GPS measurements. This study combines GPS and GLONASS observations in geodetic TFT in order to determine the added value of the GLONASS data in the results. Using the software Atomium, we demonstrate on one hand that using both constellations improves the solution for both CV and PPP results when analysing short data batches. In that case, there are not enough GPS code data to calibrate the solution, and additional GLONASS code data allows us to retrieve a correct absolute value for the solution. On the other hand, the CV results of frequency transfer are not significantly affected by adding GLONASS data, while in PPP the combination with GLONASS modifies the frequency transfer results, and in particular the daily frequency offset, with maximum differences of 150 ps between the TFT solutions obtained with GPS-only or GPS + GLONASS.  相似文献   

5.
The integration of geosynchronous orbit (GSO) satellites in Global Navigation Satellite Systems (GNSS) is mostly discussed to enable a regional enhancement for tracking. But how do GSO satellites affect the orbit determination of the rest of the constellation? How accurately can these orbits be determined in a future GNSS tracking scenario with optical links? In this simulation study we analyze the benefit of GSO satellites as an expansion of a MEO (Medium Earth Orbit) satellite constellation – we selected the Galileo satellite constellation – for MEO Precise Orbit Determination (POD). We address not only the impact on POD of MEO satellites but also the possibility to precisely determine the GSO satellites – geostationary orbits (GEO) and inclined geosynchronous orbits (IGSO) – in such an expanded MEO constellation. In addition to GNSS microwave observations, we analyze the influence of different optical links between the participating entities: Optical two-way Inter-Satellite Links (OISL) and ground-space oriented Optical Two-Way Links (OTWL). These optical measurements together with the GNSS microwave observations give a remarkable benefit for the POD capability. In the case of GNSS and OTWL, we simulate the measurements with regard to a network of 16 ground stations. We pay great attention to the simulation of systematic effects of all measurement techniques. We discuss the influence on the systematic errors as well as the formal orbit uncertainties. A MEO constellation expanded with GSO satellites as well as the use of optical links together with GNSS observations not only improves the MEO satellite orbits but also the GSOs to a great extent.  相似文献   

6.
北斗系统作为我国自行研制的导航系统,具有独特的混合星座特性,其反射事件在海洋上的空间分布和覆盖性能的研究成果较少。针对上述问题,模拟了北斗三号(Beidou System 3,BDS3)以及全球定位系统(Global Positioning System,GPS)空间星座,模拟不同性能参数的低轨接收卫星,在此仿真系统的基础上,计算反射事件在各仿真场景下的海洋覆盖率以及同时发生反射事件的卫星数量。结果表明:BDS3与GPS相比具有更大的反射事件海洋覆盖率,覆盖性能更优;仿真周期7天与1天相比,前者卫星产生的反射事件海洋覆盖率约为后者5倍;低轨道卫星(Low Earth Orbit,LEO)轨道高度越高,天线波束角度越大,反射事件海洋覆盖率越大;3颗LEO卫星下同时发生反射事件卫星数的平均值约为单颗LEO卫星的3倍。可通过设计多星组网来提高反射事件海洋覆盖率。研究结果对星载反射技术海洋遥感应用方面有一定的参考价值。  相似文献   

7.
Since China’s BeiDou satellite navigation system (BDS) began to provide regional navigation service for Asia-Pacific region after 2012, more new generation BDS satellites have been launched to further expand BDS’s coverage to be global. In this contribution, precise positioning models based on BDS and the corresponding mathematical algorithms are presented in detail. Then, an evaluation on BDS’s real-time dynamic positioning and navigation performance is presented in Precise Point Positioning (PPP), Real-time Kinematic (RTK), Inertial Navigation System (INS) tightly aided PPP and RTK modes by processing a set of land-borne vehicle experiment data. Results indicate that BDS positioning Root Mean Square (RMS) in north, east, and vertical components are 2.0, 2.7, and 7.6?cm in RTK mode and 7.8, 14.7, and 24.8?cm in PPP mode, which are close to GPS positioning accuracy. Meanwhile, with the help of INS, about 38.8%, 67.5%, and 66.5% improvements can be obtained by using PPP/INS tight-integration mode. Such enhancements in RTK/INS tight-integration mode are 14.1%, 34.0%, and 41.9%. Moreover, the accuracy of velocimetry and attitude determination can be improved to be better than 1?cm/s and 0.1°, respectively. Besides, the continuity and reliability of BDS in both PPP and RTK modes can also be ameliorated significantly by INS during satellite signal missing periods.  相似文献   

8.
The Geostationary Earth Orbit (GEO) satellite is a crucial part of the BeiDou Navigation Satellite System (BDS) constellation. However, due to various perturbation forces acting on the GEO satellite, it drifts gradually over time. Thus, frequent orbit maneuvers are required to maintain the satellite at its designed position. During the orbit maneuver and recovery periods, the orbit quality of the maneuvered satellite computed with broadcast navigation ephemeris will be significantly degraded. Furthermore, the conventional dynamic Precise Orbit Determination (POD) approach may not work well, because of a lack of publicly available satellite information for modeling the thrust forces. In this paper, a near real-time approach free of thrust forces modeling is proposed for BDS GEO satellite orbit determination and maneuver analysis based on the Reversed Point Positioning (RPP). First, the station coordinates and receiver clock offsets are estimated by GPS/BDS combined Single Point Positioning (SPP) with single-frequency phase-smoothed pseudorange observations. Then, with the fixed station coordinates and receiver clock offsets, the RPP method can be conducted to determine the GEO satellite orbits. When no orbit maneuvers occur, the proposed method can obtain orbit accuracies of 0.92, 2.74, and 8.30?m in the radial, along-track, and cross-track directions, respectively. The average orbit-only Signal-In-Space Range Error (SISRE) is 1.23?m, which is slightly poorer than that of the broadcast navigation ephemeris. Using four days of GEO maneuvered datasets, it is further demonstrated that the derived orbits can be employed to characterize the behaviors of GEO satellite maneuvers, such as the time span of the maneuver as well as the satellite thrusting accelerations. These results prove the efficiency of the proposed method for near real-time GEO satellite orbit determination during maneuvers.  相似文献   

9.
传统的地面测控和GNSS均无法实现HEO卫星全弧段的跟踪观测.在分析北斗导航信号及其星间链路信号对典型HEO的观测几何及覆盖特性的基础上,利用北斗导航及其星间链路对HEO测控支持形成互补的特点,提出了一种卫星导航与星间链路相结合的自主导航方法.对HEO定轨进行分段划分并基于EKF设计了卫星导航与星间链路数据融合定轨的自主导航算法.分析结果表明,本文提出的方法能够从全弧段上改善HEO的观测几何,定轨精度比仅使用卫星导航提高了2个数量级,并且仅需较少的星间链路资源.   相似文献   

10.
The evolving BeiDou Navigation Satellite System constellation brings new opportunities for high-precision applications. In this contribution the focus will be on one such application, namely precise and instantaneous relative navigation of a formation of LEO satellites. The aim is to assess the ambiguity resolution performance with the future GPS and BeiDou constellations depending on system choice (GPS, BeiDou, or GPS+BeiDou), single- or dual-frequency observations, receiver noise, and uncertainties in ionosphere modelling. In addition, for the GPS+BeiDou constellation it will be shown how the growing BeiDou constellation in the years to come can already bring an important performance improvement compared to the GPS-only case. The performance will be assessed based on the percentage of time that the required precision can be obtained with a partial ambiguity resolution strategy.  相似文献   

11.
12.
The determination of high-precision orbits for Low Earth Orbiting (LEO) satellites (e.g., CHAMP, GRACE, MetOp-A) is based on dual-frequency tracking data from on-board GPS (Global Positioning System) receivers. The two frequencies allow it to eliminate the first order ionosphere effects. Data screening and precise orbit determination (POD) procedures are optimized under the assumption of the availability of two frequencies.  相似文献   

13.
The first European Space Agency Earth explorer core mission GOCE (Gravity field and steady-state Ocean Circulation Explorer) has been launched on March 17, 2009. The 12-channel dual-frequency Global Positioning System receiver delivers 1 Hz data and provides the basis for precise orbit determination (POD) on the few cm-level for such a very low orbiting satellite (254.9 km). As a member of the European GOCE Gravity Consortium, which is responsible for the GOCE High-level Processing Facility (HPF), the Astronomical Institute of the University of Bern (AIUB) provides the Precise Science Orbit (PSO) product for the GOCE satellite. The mission requirement for 1-dimensional POD accuracy is 2 cm. The use of in-flight determined antenna phase center variations (PCVs) is necessary to meet this requirement. The PCVs are determined from 154 days of data and the magnitude is up to 3-4 cm. The impact of the PCVs on the orbit determination is significant. The cross-track direction benefits most of the PCVs. The improvement is clearly seen in the orbit overlap analysis and in the validation with independent Satellite Laser Ranging (SLR) measurements. It is the first time that SLR could validate the cross-track component of a LEO orbit.  相似文献   

14.
北斗卫星共视增强罗兰-C授时应用   总被引:1,自引:0,他引:1  
介绍用北斗卫星共视技术增强罗兰-C导航系统与国家授时中心协调世界时UTC(NTSC)的时间同步和授时服务能力这对罗兰-C与北斗卫星两大自主导航系统相互增强进行组合定位、导航、授时(PNT)应用和对系统保障及国家安全十分有益。  相似文献   

15.
The global navigation satellite system (GNSS) is presently a powerful tool for sensing the Earth's ionosphere. For this purpose, the ionospheric measurements (IMs), which are by definition slant total electron content biased by satellite and receiver differential code biases (DCBs), need to be first extracted from GNSS data and then used as inputs for further ionospheric representations such as tomography. By using the customary phase-to-code leveling procedure, this research comparatively evaluates the calibration errors on experimental IMs obtained from three GNSS, namely the US Global Positioning System (GPS), the Chinese BeiDou Navigation Satellite System (BDS), and the European Galileo. On the basis of ten days of dual-frequency, triple-GNSS observations collected from eight co-located ground receivers that independently form short-baselines and zero-baselines, the IMs are determined for each receiver for all tracked satellites and then for each satellite differenced for each baseline to evaluate their calibration errors. As first derived from the short-baseline analysis, the effects of calibration errors on IMs range, in total electron content units, from 1.58 to 2.16, 0.70 to 1.87, and 1.13 to 1.56 for GPS, Galileo, and BDS, respectively. Additionally, for short-baseline experiment, it is shown that the code multipath effect accounts for their main budget. Sidereal periodicity is found in single-differenced (SD) IMs for GPS and BDS geostationary satellites, and the correlation of SD IMs over two consecutive days achieves the maximum value when the time tag is around 4?min. Moreover, as byproducts of zero-baseline analysis, daily between-receiver DCBs for GPS are subject to more significant intra-day variations than those for BDS and Galileo.  相似文献   

16.
全球导航卫星系统/惯性导航系统(GNSS/INS)组合导航可以提供连续、高精度的位置、速度、姿态信息,被广泛应用于无人机的状态估计。其中滤波算法的构建是其组合关键。不同组合导航的模式会对导航定位结果产生相应的影响。针对直接法和间接法这2种常见的组合模式,分别构建了基于扩展卡尔曼滤波(EKF)的全球定位系统/惯性导航系统(GPS/INS)松组合模式,并将其运用于不同飞行场景下无人机(UAV)的实时动态状态估计。仿真场景以及实际数据验证结果表明,间接法在精度和稳定性方面优于直接法,直接法在滤波计算速率方面优于间接法。因此,当系统具有较高的计算性能,且面向高精度的应用情况下可选择间接法作为无人机导航的技术方案;对于快速求解但精度要求不高的应用情况下,选择直接法作为无人机导航的技术方案可以在一定程度上降低系统的成本。   相似文献   

17.
Autonomous satellite navigation is based on the ability of a Global Navigation Satellite System (GNSS), such as Beidou, to estimate orbits and clock parameters onboard satellites using Inter-Satellite Link (ISL) measurements instead of tracking data from a ground monitoring network. This paper focuses on the time synchronization of new-generation Beidou Navigation Satellite System (BDS) satellites equipped with an ISL payload. Two modes of Ka-band ISL measurements, Time Division Multiple Access (TDMA) mode and the continuous link mode, were used onboard these BDS satellites. Using a mathematical formulation for each measurement mode along with a derivation of the satellite clock offsets, geometric ranges from the dual one-way measurements were introduced. Then, pseudoranges and clock offsets were evaluated for the new-generation BDS satellites. The evaluation shows that the ranging accuracies of TDMA ISL and the continuous link are approximately 4?cm and 1?cm (root mean square, RMS), respectively. Both lead to ISL clock offset residuals of less than 0.3?ns (RMS). For further validation, time synchronization between these satellites to a ground control station keeping the systematic time in BDT was conducted using L-band Two-way Satellite Time Frequency Transfer (TWSTFT). System errors in the ISL measurements were calibrated by comparing the derived clock offsets with the TWSTFT. The standard deviations of the estimated ISL system errors are less than 0.3?ns, and the calibrated ISL clock parameters are consistent with that of the L-band TWSTFT. For the regional BDS network, the addition of ISL measurements for medium orbit (MEO) BDS satellites increased the clock tracking coverage by more than 40% for each orbital revolution. As a result, the clock predicting error for the satellite M1S was improved from 3.59 to 0.86?ns (RMS), and the predicting error of the satellite M2S was improved from 1.94 to 0.57?ns (RMS), which is a significant improvement by a factor of 3–4.  相似文献   

18.
To make up for the insufficiency of earth-based TT&C systems, the use of GNSS technology for high-orbit spacecraft navigation and orbit determination has become a new technology. It is of great value to applying Geosynchronous Earth Orbit (GEO) and Inclined GeoStationary Orbit (IGSO) navigation satellites for supporting the navigation of high-orbit spacecraft since there are three different types of navigation satellites in BeiDou Navigation Satellite System (BDS): Medium Earth Orbit (MEO), GEO and IGSO. This paper conducts simulation experiments based on Two-Line Orbital Element (TLE) data to analyze and demonstrate the role of these satellites in the navigation of high-orbit spacecraft. Firstly, the spacecraft in GEO was used as the target satellite to conduct navigation experiments. Experiments show that for the spacecraft on the GEO orbit, after adding GEO and IGSO respectively on the basis of receiving MEO navigation satellite signals, the accuracies were improved by 7.22 % and 6.06 % respectively. When adding both GEO and IGSO navigation satellites at the same time, the accuracy can reach 16 m. In the second place, navigation and positioning experiments were carried out on three high elliptical orbit (HEO) satellites with different semimajor axis (32037.2 km, 42385.9 km, 67509.6 km). The experiments show that the number of visible satellites has been improved significantly after adding GEO and IGSO navigation satellites at the same time. The visible satellites in these three orbits were improved by 32.84 %, 41.12 % and 37.68 %, respectively compared with only observing MEO satellites.The RMS values of the navigation positioning errors of these three orbits are 25.59 m, 87.58 m and 712.48 m, respectively.  相似文献   

19.
There are code biases on the pseudo-range observations of the Beidou Navigation Satellite System (BDS) that range in size from several decimeters to larger than one meter. These biases can be divided into two categories, which are the code biases in the pseudo-range observations of Inclined Geo-Synchronous Orbit (IGSO) satellites and Medium Earth Orbit (MEO) satellites and the code biases in the pseudo-range observations of Geosynchronous Earth Orbit (GEO) satellites. In view of the code bias of the IGSO/MEO satellites, the code bias correction model is established using the weighted least square curve fitting method. After the correction, the code biases of the IGSO and MEO satellites are clearly mitigated. A methodology of correcting GEO code bias is proposed based on the empirical mode decomposition (EMD)-wavelet transform (WT) coupled model. The accuracies of the GEO multipath combination of the B1, B2 and B3 frequencies are improved by 39.9%, 17.9%, and 29.4%, respectively. Based on the corrections above, the ten days observations of three Multi-GNSS Experiment (MGEX) stations are processed. The results indicate that the convergence time of the precise point positioning (PPP) can be improved remarkably by applying a code bias. The mean convergence time can be improved by 14.67% after the IGSO/MEO code bias correction. By applying the GEO code bias, the mean convergence time can be further improved by 17.42%.  相似文献   

20.
The performance of real-time (RT) precise positioning can be improved by utilizing observations from multiple Global Navigation Satellite Systems (GNSS) instead of one particular system. Since the end of 2012, BeiDou, independently established by China, began to provide operational services for users in the Asia-Pacific regions. In this study, a regional RT precise positioning system is developed to evaluate the performance of GPS/BeiDou observations in Australia in providing high precision positioning services for users. Fixing three hourly updated satellite orbits, RT correction messages are generated and broadcasted by processing RT observation/navigation data streams from the national network of GNSS Continuously Operating Reference Stations in Australia (AUSCORS) at the server side. At the user side, RT PPP is realized by processing RT data streams and the RT correction messages received. RT clock offsets, for which the accuracy reached 0.07 and 0.28?ns for GPS and BeiDou, respectively, can be determined. Based on these corrections, an accuracy of 12.2, 30.0 and 45.6?cm in the North, East and Up directions was achieved for the BeiDou-only solution after 30 min while the GPS-only solution reached 5.1, 15.3 and 15.5?cm for the same components at the same time. A further improvement of 43.7, 36.9 and 45.0 percent in the three directions, respectively, was achieved for the combined GPS/BeiDou solution. After the initialization process, the North, East and Up positioning accuracies were 5.2, 8.1 and 17.8?cm, respectively, for the BeiDou-only solution, while 1.5, 3.0, and 4.7?cm for the GPS-only solution. However, we only noticed a 20.9% improvement in the East direction was obtained for the GPS/BeiDou solution, while no improvements in the other directions were detected. It is expected that such improvements may become bigger with the increasing accuracy of the BeiDou-only solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号