首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Visible Imaging System (VIS) is a set of three low-light-level cameras to be flown on the POLAR spacecraft of the Global Geospace Science (GGS) program which is an element of the International Solar-Terrestrial Physics (ISTP) campaign. Two of these cameras share primary and some secondary optics and are designed to provide images of the nighttime auroral oval at visible wavelengths. A third camera is used to monitor the directions of the fields-of-view of these sensitive auroral cameras with respect to sunlit Earth. The auroral emissions of interest include those from N 2 + at 391.4 nm, Oi at 557.7 and 630.0 nm, Hi at 656.3 nm, and Oii at 732.0 nm. The two auroral cameras have different spatial resolutions. These resolutions are about 10 and 20 km from a spacecraft altitude of 8R e . The time to acquire and telemeter a 256×256-pixel image is about 12 s. The primary scientific objectives of this imaging instrumentation, together with thein-situ observations from the ensemble of ISTP spacecraft, are (1) quantitative assessment of the dissipation of magnetospheric energy into the auroral ionosphere, (2) an instantaneous reference system for thein-situ measurements, (3) development of a substantial model for energy flow within the magnetosphere, (4) investigation of the topology of the magnetosphere, and (5) delineation of the responses of the magnetosphere to substorms and variable solar wind conditions.  相似文献   

2.
The Polar Ionospheric X-ray Imaging Experiment (PIXIE)   总被引:2,自引:0,他引:2  
The Polar Ionospheric X-ray Imaging Experiment (PIXIE) is an X-ray multiple-pinhole camera designed to image simultaneously an entire auroral region from high altitudes. It will be mounted on the despun platform of the POLAR spacecraft and will measure the spatial distribution and temporal variation of auroral X-ray emissions in the 2 to 60 keV energy range on the day side of the Earth as well as the night. PIXIE consists of two pinhole cameras integrated into one assembly, each equipped with an adjustable aperture plate that allows an optimum number of nonoverlapping images to be formed in the detector plane at each phase of the satellite's eccentric orbit. The aperture plates also allow the pinhole size to be adjusted so that the experimenter can trade off spatial resolution against instrument sensitivity. In the principal mode of operation, one aperture plate will be positioned for high spatial resolution and the other for high sensitivity. The detectors consist of four stacked multiwire position-sensitive proportional counters, two in each of two separate gas chambers. The front chamber operates in the 2–12 keV energy range and the rear chamber in the 10–60 keV range. All of the energy and position information for each telemetered X-ray event is available on the ground. This enables the experimenter to adjust the exposure timepostfacto so that energy spectra of each X-ray emitting region can be independently accumulated. From these data PIXIE will provide, for the first time, global images of precipitated energetic electron spectra, energy inputs, ionospheric electron densities, and upper atmospheric conductivities.  相似文献   

3.
The auroral zone ionosphere is coupled to the outer magnetosphere by means of field-aligned currents. Parallel electric fields associated with these currents are now widely accepted to be responsible for the acceleration of auroral particles. This paper will review the theoretical concepts and models describing this coupling. The dynamics of auroral zone particles will be described, beginning with the adiabatic motions of particles in the converging geomagnetic field in the presence of parallel potential drops and then considering the modifications to these adiabatic trajectories due to wave-particle interactions. The formation of parallel electric fields can be viewed both from microscopic and macroscopic viewpoints. The presence of a current carrying plasma can give rise to plasma instabilities which in a weakly turbulent situation can affect the particle motions, giving rise to an effective resistivity in the plasma. Recent satellite observations, however, indicate that the parallel electric field is organized into discrete potential jumps, known as double layers. From a macroscopic viewpoint, the response of the particles to a parallel potential drop leads to an approximately linear relationship between the current density and the potential drop.The currents flowing in the auroral circuit must close in the ionosphere. To a first approximation, the ionospheric conductivity can be considered to be constant, and in this case combining the ionospheric Ohm's Law with the linear current-voltage relation for parallel currents leads to an outer scale length, above which electric fields can map down to the ionosphere and below which parallel electric fields become important. The effects of particle precipitation make the picture more complex, leading to enhanced ionization in upward current regions and to the possibility of feedback interactions with the magnetosphere.Determining adiabatic particle orbits in steady-state electric and magnetic fields can be used to determine the self-consistent particle and field distributions on auroral field lines. However, it is difficult to pursue this approach when the fields are varying with time. Magnetohydrodynamic (MHD) models deal with these time-dependent situations by treating the particles as a fluid. This class of model, however, cannot treat kinetic effects in detail. Such effects can in some cases be modeled by effective transport coefficients inserted into the MHD equations. Intrinsically time-dependent processes such as the development of magnetic micropulsations and the response of the magnetosphere to ionospheric fluctuations can be readily treated in this framework.The response of the lower altitude auroral zone depends in part on how the system is driven. Currents are generated in the outer parts of the magnetosphere as a result of the plasma convection. The dynamics of this region is in turn affected by the coupling to the ionosphere. Since dissipation rates are very low in the outer magnetosphere, the convection may become turbulent, implying that nonlinear effects such as spectral transfer of energy to different scales become important. MHD turbulence theory, modified by the ionospheric coupling, can describe the dynamics of the boundary-layer region. Turbulent MHD fluids can give rise to the generation of field-aligned currents through the so-called -effect, which is utilized in the theory of the generation of the Earth's magnetic field. It is suggested that similar processes acting in the boundary-layer plasma may be ultimately responsible for the generation of auroral currents.  相似文献   

4.
The Hot Plasma Experiment, F3H, on boardFreja is designed to measure auroral particle distribution functions with very high temporal and spatial resolution. The experiment consists of three different units; an electron spectrometer that measures angular and energy distributions simultaneously, a positive ion spectrometer that is using the spacecraft spin for three-dimensional measurements, and a data processing unit. The main scientific objective is to study positive ion heating perpendicular to the magnetic field lines in the auroral region. The high resolution measurements of different positive ion species and electrons have already provided important information on this process as well as on other processes at high latitudes. This includes for example high resolution observations of auroral particle precipitation features and source regions of positive ions during magnetic disturbances. TheFreja orbit with an inclination of 63° allows us to make detailed measurements in the nightside auroral oval during all disturbance levels. In the dayside, the cusp region is covered during magnetic disturbances. We will here present the instrument in some detail and some outstanding features in the particle data obtained during the first months of operation at altitudes around 1700 km in the northern hemisphere auroral region.  相似文献   

5.
Monfils  A. 《Space Science Reviews》1968,8(5-6):804-845
Summary The paper presents a review of the main spectroscopic studies of polar aurora accomplished during the past eight years.In a first part, the few new results concerning knowledge of the spectrum itself are examined. They concern detailed spectrum analysis, a few spectral features (sodium doublet, helium lines) and the extension of spectral observations to very low wavelengths (3000 to 1000 Å). The main features discovered in this region are the Vegard-Kaplan and Lyman-Birge-Hopfield systems as well as the 1304 oxygen line. A comparison of observed and theoretical intensities shows serious discrepancies, not all of which may be attributed to difficulties of observation. Next is given classification, from a spectral point of view, of the various kinds of auroral phenomena, with respect to altitude and latitude. Particular attention is given to high altitude and sunlit aurorae, and to low intensity, non discrete aurorae observed around the 70th degree (geomagnetic) and around the polar cap.A second part underlines the influence of two important parameters, time and location, mainly as a possible means of detection of different mechanisms.As far as the time parameter is concerned, a few pages are devoted to statistical analysis of the great wealth of observational data accumulated over twenty or thirty years.It is shown that important conclusions emerge from such studies. Very small scale time variations are mainly concerned with the study of metastable states, their lifetimes and de-excitation due to shocks between particles. Differences of spectra with the location of the observed emitting volume is a much more recent subject, which has, however, produced important results. These concern mainly observations made from rockets, although a few results have been obtained from the ground. All these indicate significant differences that may shed some light on the difficult problem of mechanisms. The latter has not been developed, since a recent review has been written on the subject. The same is true for the very important problem of hydrogen emissions.The last pages are concerned with the latest developments of experimental methods, with some stress on image tubes, which will probably be one of the main detecting devices for observing auroral spectra in the near future.  相似文献   

6.
The last decade has seen a period of rapid growth in our understanding of the processes which occur in the auroral regions. Much of our understanding is based on the copious new observations which have been made available in the auroral community. The present work is a short overview of the plasma conditions which obtain throughout much of the auroral region. It covers the diffuse and discrete auroral electron precipitation in the morning and evening oval, cusp, and polar cap. The ionospheric ion outflow throughout the high latitude regime is also described and related to the electron observations.  相似文献   

7.
8.
Simultaneous changes of auroral forms, brightness, and motions over the whole polar region are studied, using IGY all-sky camera records from widely distributed stations in eastern Siberia, Alaska, Canada and the northern United States. It is found that the auroral system centered in the midnight sector in the auroral zone repeatedly undergoes an expansion and subsequent contraction; during the maximum stage of the activity, the whole auroral system extends over a substantial portion of the darkened polar region. Such extensive auroral activity as a whole may be regarded as a single event, and is described in terms of the auroral substorm. The substorm has two characteristic phases, an expansive phase and a recovery phase. Characteristic auroral displays over the entire polar region during the substorm are described in detail. The basic physical processes involved for the auroral substorm are also discussed.Geomagnetic disturbances associated with the auroral substorm are also described in detail in terms of the polar magnetic substorm, and it is shown that both the auroral substorm and the polar magnetic substorm are different aspects of the manifestation of a large-scale plasma motion in the magnetosphere.The distribution of the aurora for different degrees of the geomagnetic activity is also discussed in terms of the auroral belt. It is shown that the center line of the auroral belt moves greatly with respect to its average location (namely the auroral zone), depending on the degree of the magnetic activity.  相似文献   

9.
Freja *, a joint Swedish and German scientific satellite launched on october 6 1992, is designed to give high temporal/spatial resolution measurements of auroral plasma characteristics. A high telemetry rate (520 kbits s–1) and 15 Mbyte distributed on board memories that give on the average 2 Mbits s–1 for one minute enablesFreja to resolve meso and micro scale phenomena in the 100 m range for particles and 1–10 m range for electric and magnetic fields. The on-board UV imager resolve auroral structures of kilometer size with a time resolution of one image per 6 s. Novel plasma instruments giveFreja the capability to increase the spatial/temporal resolution orders of magnitudes above that achieved on satellites before. The scientific objective ofFreja is to study the interaction between the hot magnetospheric plasma with the topside atmosphere/ionosphere. This interaction leads to a strong energization of magnetospheric and ionospheric plasma and an associated erosion, and loss, of matter from the Terrestrial exosphere.Freja orbits with an altitude of 600–1750 km, thus covering the lower part of the auroral acceleration region. This altitude range hosts processes that heat and energize the ionospheric plasma above the auroral zone, leading to the escape of ionospheric plasma and the formation of large density cavities.  相似文献   

10.
光电稳定平台中,红外光学器件以其特有的优势越来越多地被采用。精确、快速地对红外光轴进行校准和标定是红外器件应用的一个重要课题。本文介绍了一种基于红外准直仪原理设计的红外光轴校准系统,对靶标位置偏差造成的光轴偏差进行了分析计算,并提出了确定抛物面镜光轴的具体方法。研制了红外光/可见光靶标模拟器,解决了无人机光电稳定平台中红外热像仪与其他可见光光学器件的光轴平行度校准、红外光轴相对系统零位基准标定等问题。所述方法经试验证明,在目前不具备红外准直仪的条件下同样实现了较高精度的红外光轴校准和标定,有着重要的实际工程意义。  相似文献   

11.
Causality between near-Earth and midtail substorm processes is one of the most controversial issues about the substorm trigger mechanism. The currently most popular model, the outside-in model, assumes that near-Earth reconnection is initiated in the midtail region before substorm onset and that the associated flow burst causes tail current disruption in the near-Earth region. However, there remain some outstanding issues that may serve as critical tests of this model. The present article reviews recent satellite and ground observations addressing three such critical issues with a focus on substorm-related auroral features. First, near-Earth reconnection, even if it reaches the lobe magnetic field, does not necessarily trigger a global substorm, but it is often related to a pseudobreakup. This fact suggests that there is an additional or alternative condition for substorm development. Secondly, although there appears to be one-to-one correspondence between flow bursts in the plasma sheet and equatorward-moving auroral structures (auroral streamers), no such auroral feature that can be associated with the fast plasma flow can be identified prior to auroral breakups. On the other hand, the flow burst is widely regarded as a manifestation of reconnection and therefore, according to the outside-in model, should be created in the near-Earth plasma sheet before substorm onset. Finally, auroral arcs poleward of a breakup arc are not affected until the front of auroral intensification reaches those arcs. The last two points suggest that if substorm is triggered as the outside-in model describes, the ionosphere is electromagnetically detached from the magnetosphere, which, however, has not been addressed theoretically. Thus, it should be crucial for a better understanding of the substorm trigger process to implement the magnetosphere-ionosphere coupling in future modeling efforts and to address those basic issues as a guide for critically evaluating each model.  相似文献   

12.
Recent measurements of precipitating energetic particles and vector magnetic fields from satellites and sounding rockets have verified the existence of geomagnetically-aligned electric currents at high latitudes in the ionosphere and magnetosphere. The spatial and temporal configuration of such currents, now commonly called Birkeland currents, has delineated their role in providing ionospheric closure of magnetospheric current systems, and gross features of these current systems may be understood in terms of theoretical models of magnetospheric convection. The association of Birkeland currents with auroral features on a very small scale suggests that auroral acceleration may result from the current flow.  相似文献   

13.
The morphology of development of auroral flares (magnetospheric substorms) for both electron and proton auroras is summarized, based on ground-based as well as rocket-borne and satellite-borne data with specific reference to the morphology of solar flares.The growth phase of an auroral flare is produced by the inflow of the solar wind energy into the magnetosphere by the reconnection mechanism between the solar wind field and the geomagnetic field, thus the neutral and plasma sheets in the magnetotail attaining their minimum thickness with a great stretch of the geomagnetic fluxes into the tail.The onset of the expansion phase of an auroral flare is represented by the break-up of electron and proton auroras, which is associated with strong auroral electrojets, a sudden increase in CNA, VLF hiss emissions and characteristic ULF emissions. The auroral break-up is triggered by the relaxation of stretched magnetic fluxes caused by cutting off of the tail fluxes at successively formed X-type neutral lines in the magnetotail.The resultant field-aligned currents flowing between the tailward magnetosphere and the polar ionosphere produce the field-aligned anomalous resistivity owing to the electrostatic ion-cyclotron waves; the electrical potential drop thus increased further accelerates precipitating charged particles with a result of the intensification of both the field-aligned currents and the auroral electrojet. It seems that the rapid building-up of this positive feedback system for precipitating charged particles is responsible for the break-up of an auroral flare.  相似文献   

14.
Ion demagnetization in the plasma sheet causes the formation of field-aligned current that can trigger a magnetosphere-ionosphere coupling feedback instability, which may play an important role in substorm and auroral arc generation. Since field-aligned currents close ionospheric currents, their magnitude is controlled by ionospheric conductivity. The cause of instability is the impact of increasing upward field-aligned currents on ionospheric conductivity, which in turn stimulates an increase in the field-aligned currents. When the magnitude of these currents becomes sufficiently large for the acceleration of precipitating electrons, a feedback mechanism becomes possible. Upward field-aligned currents increase the ionospheric conductivity that stimulates an explosion-like increase in field-aligned currents. It is believed that this instability may be related to substorm generation. Demagnetization of hot ions in the plasma sheet leads to the motion of magnetospheric electrons through a spatial gradient of ion population. Field-aligned currents, because of their effect on particle acceleration and the magnitude of ionospheric conductivity, can also lead to another type of instability associated with the breaking of the earthward convection flow into convection streams. The growth rate of this instability is maximum for structures with sizes less than the ion Larmor radius in the equatorial plane. This may lead to the formation of auroral arcs with widths of the order of 10 km. This instability is able to explain many features of auroral arcs, including their conjugacy in opposite hemispheres. However, it cannot explain very narrow (less than 1 km) arcs.  相似文献   

15.
Although the auroral substorm has been long regarded as a manifestation of the magnetospheric substorm, a direct relation of active auroras to certain magnetospheric processes is still debatable. To investigate the relationship, we combine the data of the UV imager onboard the Polar satellite with plasma and magnetic field measurements by the Geotail spacecraft. The poleward edge of the auroral bulge, as determined from the images obtained at the LHBL passband, is found to be conjugated with the region where the oppositely directed fast plasma flows observed in the near-Earth plasma sheet during substorms are generated. We conclude that the auroras forming the bulge are due to the near-Earth reconnection process. This implies that the magnetic flux through the auroral bulge is equal to the flux dissipated in the magnetotail during the substorm. Comparison of the magnetic flux through the auroral bulge with the magnetic flux accumulated in the tail lobe during the growth phase shows that these parameters have the comparable values. This is a clear evidence of the loading–unloading scheme of substorm development. It is shown that the area of the auroral bulge developing during substorm is proportional to the total (magnetic plus plasma) pressure decrease in the magnetotail. These findings stress the importance of auroral bulge observations for monitoring of substorm intensity in terms of the magnetic flux and energy dissipation.  相似文献   

16.
17.
为进一步提高光波导器件加工的可靠性,降低废品率,提出一种非接触式基于共聚焦显微图像分析的光波导加工表面粗糙度估计方法.首先采用共聚焦相机对光波导感兴趣区域进行拍摄,提取非缺陷图像区域;其次,采用粗糙度测量设备测量器件的表面粗糙度,利用图像处理方法计算提取图像区域的纹理特征,并建立二者结果间对应关系;最后,一旦建立上述关系后,便可采用相机拍摄的图像去估计待测光波导器件表面的粗糙度指标.与传统采用精密光学仪器测量光波导表面粗糙度的方法相比,本文方法不需要在线使用光学测量仪器或昂贵的后处理商业软件,具有低成本、使用方便的特点.实际应用证明了本文所提方法的正确性和有效性.  相似文献   

18.
面向单目视觉辅助光电准直仪对立方镜进行准直的需求,研究针对立方镜图像的数字图像处理技术。采用Canny边缘检测方法得到灰度图像中的边缘信息,借助Hough变换按照直线程度的强弱对边缘信息进行分类提取,得到图像中立方镜棱边对应的直线信息。按照偏角与截距对棱边直线信息进行分类排序,结合先验知识得到立方镜角点对应的配对相交直线,对配对直线求交点得到立方镜角点在图像中的位置,得到的立方镜棱边及角点信息为后续的立方镜位姿计算提供了基础数据。  相似文献   

19.
The Earth's auroral electrons produce copious non-thermal radio emissions of various types, including auroral kilometric radiation (AKR), whistler mode auroral hiss, mode conversion radiation such as auroral roar and MF-burst, and possibly HF/VHF emissions. In some cases, mechanisms have been identified and quantitatively described, whereby the energy of the auroral electrons is converted into electromagnetic radiation. In many other cases, the radiation mechanism, or the relative significance of several possible mechanisms, remains uncertain. This review covers fairly comprehensively experimental and theoretical research on types of auroral radiation other than AKR, concentrating on emissions with frequency higher than about 1kHz and treating only emissions which are unique to the auroral zone. The review covers both ground-based and in-situ observations. It covers a wide range of theoretical approaches, emphasizing those which at present appear most important for producing non-AKR auroral radiations.  相似文献   

20.
The aurorae are the result of collisions with the atmosphere of energetic particles that have their origin in the solar wind, and reach the atmosphere after having undergone varying degrees of acceleration and redistribution within the Earth's magnetosphere. The global scale phenomenon represented by the aurorae therefore contains considerable information concerning the solar-terrestrial connection. For example, by correctly measuring specific auroral emissions, and with the aid of comprehensive models of the region, we can infer the total energy flux entering the atmosphere and the average energy of the particles causing these emissions. Furthermore, from these auroral emissions we can determine the ionospheric conductances that are part of the closing of the magnetospheric currents through the ionosphere, and from these we can in turn obtain the electric potentials and convective patterns that are an essential element to our understanding of the global magnetosphere-ionosphere-thermosphere-mesosphere. Simultaneously acquired images of the auroral oval and polar cap not only yield the temporal and spatial morphology from which we can infer activity indices, but in conjunction with simultaneous measurements made on spacecraft at other locations within the magnetosphere, allow us to map the various parts of the oval back to their source regions in the magnetosphere. This paper describes the Ultraviolet Imager for the Global Geospace Sciences portion of the International Solar-Terrestrial Physics program. The instrument operates in the far ultraviolet (FUV) and is capable of imaging the auroral oval regardless of whether it is sunlit or in darkness. The instrument has an 8° circular field of view and is located on a despun platform which permits simultaneous imaging of the entire oval for at least 9 hours of every 18 hour orbit. The three mirror, unobscured aperture, optical system (f/2.9) provides excellent imaging over this full field of view, yielding a per pixel angular resolution of 0.6 milliradians. Its FUV filters have been designed to allow accurate spectral separation of the features of interest, thus allowing quantitative interpretation of the images to provide the parameters mentioned above. The system has been designed to provide ten orders of magnitude blocking against longer wavelength (primarily visible) scattered sunlight, thus allowing the first imaging of key, spectrally resolved, FUV diagnostic features in the fully sunlit midday aurorae. The intensified-CCD detector has a nominal frame rate of 37 s, and the fast optical system has a noise equivalent signal within one frame of 10R. The instantaneous dynamic range is >1000 and can be positioned within an overall gain range of 104, allowing measurement of both the very weak polar cap emissions and the very bright aurora. The optical surfaces have been designed to be sufficiently smooth to permit this dynamic range to be utilized without the scattering of light from bright features into the weaker features. Finally, the data product can only be as good as the degree to which the instrument performance is characterized and calibrated. In the VUV, calibration of an an imager intended for quantitative studies is a task requiring some pioneering methods, but it is now possible to calibrate such an instrument over its focal plane to an accuracy of ±10%. In summary, very recent advances in optical, filter and detector technology have been exploited to produce an auroral imager to meet the ISTP objectives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号