首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
The incoherent scatter radar (ISR) facility in Kharkov, Ukraine (49.6°N, 36.3°E) measures vertical profiles of electron density, electron and ion temperature, and ion composition of the ionospheric plasma up to 1100 km altitude. Acquired measurements constitute an accurate ionospheric reference dataset for validation of the variety of models and alternative measurement techniques. We describe preliminary results of comparing the Kharkov ISR profiles to the international reference ionosphere (IRI), an empirical model recognized for its reliable representation of the monthly-median climatology of the density and temperature profiles during quiet-time conditions, with certain extensions to the storm times. We limited our comparison to only quiet geomagnetic conditions during the autumnal equinoxes of 2007 and 2008. Overall, we observe good qualitative agreement between model and data both in time and with altitude. Magnitude-wise, the measured and modeled electron density and plasma temperatures profiles appear different. We discovered that representation accuracy improves significantly when IRI is driven by observed-averaged values of the solar activity index rather than their predictions. This result motivated us to study IRI performance throughout protracted solar minimum of the 24th cycle. The paper summarizes our observations and recommendations for optimal use of the IRI.  相似文献   

2.
Instead of the existing analytic distribution of the electron temperature profile used in the IRI a two linear-segment profile is proposed. This is simple to handle and can readily be matched to different experimental data from ground-based, rocket and satellite measurements. It is shown how from such data the entire profile can be determined in the height range from 120 km up to 1500 km, which includes upper heights not yet covered by the IRI.  相似文献   

3.
Monthly median values of foF2, hmF2 and M(3000)F2 parameters, with quarter-hourly time interval resolution for the diurnal variation, obtained with DPS4 digisonde at Hainan (19.5°N, 109.1°E; Geomagnetic coordinates: 178.95°E, 8.1°N) are used to investigate the low-latitude ionospheric variations and comparisons with the International Reference Ionosphere (IRI) model predictions. The data used for the present study covers the period from February 2002 to April 2007, which is characterized by a wide range of solar activity, ranging from high solar activity (2002) to low solar activity (2007). The results show that (1) Generally, IRI predictions follow well the diurnal and seasonal variation patterns of the experimental values of foF2, especially in the summer of 2002. However, there are systematic deviation between experimental values and IRI predictions with either CCIR or URSI coefficients. Generally IRI model greatly underestimate the values of foF2 from about noon to sunrise of next day, especially in the afternoon, and slightly overestimate them from sunrise to about noon. It seems that there are bigger deviations between IRI Model predictions and the experimental observations for the moderate solar activity. (2) Generally the IRI-predicted hmF2 values using CCIR M(3000)F2 option shows a poor agreement with the experimental results, but there is a relatively good agreement in summer at low solar activity. The deviation between the IRI-predicted hmF2 using CCIR M(3000)F2 and observed hmF2 is bigger from noon to sunset and around sunrise especially at high solar activity. The occurrence time of hmF2 peak (about 1200 LT) of the IRI model predictions is earlier than that of observations (around 1500 LT). The agreement between the IRI hmF2 obtained with the measured M(3000)F2 and the observed hmF2 is very good except that IRI overestimates slightly hmF2 in the daytime in summer at high solar activity and underestimates it in the nighttime with lower values near sunrise at low solar activity.  相似文献   

4.
The spread-F echo of ionograms and scintillation of satellite signal propagation along the Earth-space path are two typical phenomena induced by ionospheric irregularities. In this study, we obtained spread-F data from HF (high frequency) digital ionosonde and scintillation index (S4) data from L-band and UHF receivers at low- and mid-latitudes in China during the 24th solar cycle. These four sites were located at Haikou (HK) (20°N, 110.34°E), Kunming (KM) (25.64°N, 103.72°E), Qingdao (QD) (36.24°N, 120.42°E), and Manzhouli (MZL) (49.56°N, 117.52°E). We used these data to investigate spread-F and scintillation occurrence percentages and variations with local time, season, latitude and solar activity. A comparative study of spread-F and scintillation occurrence rates has been made. The main conclusions are as follows: (a) FSF occurred mostly during post-midnight, while RSF and scintillation appeared mainly during pre-midnight at HK and KM; (b) FSF occurrence rates were larger at QD and MZL than expected; (c) the FSF occurrence percentages were anti-correlated with solar activity at HK and KM; meanwhile RSF and scintillation occurrence rates increased with the increase of solar activity at this two sites; (d) the highest FSF occurrence rates mostly appeared during the summer months, while RSF and scintillation occurred mostly in the equinoctial months at HK and KM; (e) the scintillation occurrence was usually associated with the appearance of RSF, probably due to a different physical mechanism comparing with FSF. Some of these results verified the conclusions of previous papers, whereas some show slight difference. These results are important in understanding ionospheric irregularities variations characteristic at low- and mid-latitudes in China.  相似文献   

5.
Electron density-height profiles from the Arecibo incoherent scatter radar have been analysed for the period August 1974 to May 1977, to look for a thickness parameter for the bottomside F-region of the ionosphere. These profiles were obtained using short pulse lengths of 24 μs resulting in high altitude resolution. In the analysis, Gulyaeva's empirical relationship that an electron density of 0.5 NmF occurs at the height of 0.8 hmF2 is tested. Arecibo profiles indicate this electron density arises close to (0.84+0.02) hmF2 for most of the cases. However, there are some instances where large departures occur.  相似文献   

6.
In the years 1974 to 1977 the incoherent-scatter radar at Arecibo made high resolution measurements of electron density in time and altitude, under the I29 program. This program ran on monthly basis and each observing run was for about 36 hours, consisting of two daytime periods and the intervening night. Electron density was measured from 100 to 500 km with a single 24 μs pulse which provided an altitude resolution of 3.6 km. These measurements provided very accurate values of hmF2, h0.5, E-F valley parameters and topside Ne gradient thereby providing important inputs for the improvement of IRI. This paper gives a summary of these inputs.  相似文献   

7.
Ion composition of the D region is principally characterized by the existence of two distinct regions of predominant molecular ions and predominant cluster ions, separated from each other by a rather sharp ‘transition height’, which is proposed to be included in the IRI as an additional parameter, supplementing the electron density models. It is possible to predict the position of this ‘transition height’ at a given place and time with the aid of a simplified ion chemistry scheme which is shown to be satisfactorily compatible with experimental ion composition data available in the literature. Our suggested method of this prediction makes use of the (IRI or experimental) electron density profile at the location and season in question, together with an effective clustering rate coeeficient calculated from corresponding temperature and density profiles taken from a suitable reference model of the neutral atmosphere.  相似文献   

8.
Ion composition of the ionosphere is an important parameter of any ionospheric model. The International Reference Ionosphere-1979 includes a program for the relative ion composition computation. The program was constructed on the basis of the Danilov and Semenov /1/ empirical model, which averaged 42 rocket measurements of the ion composition at middle latitudes below 200 km, on “AEROS” satellite measurements, and on Taylor's data /2/ above that altitude.  相似文献   

9.
We suggest a new field of application of IRI modeling – determination of ionosphere transfer characteristic (ITC) for radio astronomical signals (RAS). VHF and HF RAS are widely used for observations of the Sun and pulsars. It is necessary to take into account possible distortions of RAS in the Earth ionosphere. However, in contrast to modern navigation systems (GPS, GLONASS, GALILEO), where very accurate reconstruction of ionosphere parameters is a built-in function, in present-day radio astronomy a retrieve of ITC has not been appropriately worked out yet. It collides with increasing requirements to accuracy of the analysis of RAS amplitude profile and to the angular and polarizing resolution of radio telescopes of new generation. We have developed a method and software for calculation of the ionosphere measure of rotation (RM) and the measure of dispersion (DM). We used the ionosphere model IRI-2001, magnetic-field model IGRF-10 and values of ionosphere total electron content as deduced from GPS measurements. The obtained values of the ionosphere DM and RM were recalculated into characteristics of phase delay, Faraday amplitude modulation and polarization changes. We made calculations for different levels of geomagnetic activity and for different angular position of radio sources as well.  相似文献   

10.
In the last decades there have been an increasing interest in improving the accuracy of spacecraft navigation and trajectory data. In the course of this plan some anomalies have been found that cannot, in principle, be explained in the context of the most accurate orbital models including all known effects from classical dynamics and general relativity. Of particular interest for its puzzling nature, and the lack of any accepted explanation for the moment, is the flyby anomaly discovered in some spacecraft flybys of the Earth over the course of twenty years. This anomaly manifest itself as the impossibility of matching the pre and post-encounter Doppler tracking and ranging data within a single orbit but, on the contrary, a difference of a few mm/s in the asymptotic velocities is required to perform the fitting.Nevertheless, no dedicated missions have been carried out to elucidate the origin of this phenomenon with the objective either of revising our understanding of gravity or to improve the accuracy of spacecraft Doppler tracking by revealing a conventional origin.With the occasion of the Juno mission arrival at Jupiter and the close flybys of this planet, that are currently been performed, we have developed an orbital model suited to the time window close to the perijove. This model shows that an anomalous acceleration of a few mm/s2 is also present in this case. The chance for overlooked conventional or possible unconventional explanations is discussed.  相似文献   

11.
Variations of the ionospheric weather W-index for two midlatitude observatories, namely, Grahamstown and Hermanus, and their conjugate counterpart locations in Africa are studied for a period from October 2010 to December 2011. The observatories are located in the longitude sector, which has consistent magnetic equator and geographic equator so that geomagnetic latitudes of the line of force are very close to the corresponding geographic latitudes providing opportunity to ignore the impact of the difference of the gravitational field and the geomagnetic field at the conjugate points on the ionosphere structure and dynamics. The ionosondes of Grahamstown and Hermanus provide data of the critical frequency (foF2), and Global Ionospheric Maps (GIM) provide the total electron content (TECgps) along the magnetic field line up to the conjugate point in the opposite hemisphere. The global model of the ionosphere, International Reference Ionosphere, extended to the plasmasphere altitude of 20,200 km (IRI-Plas) is used to deliver the F2 layer peak parameters from TECgps at the magnetic conjugate area. The evidence is obtained that the electron gas heated by day and cooled by night at the summer hemisphere as compared with the opposite features in the conjugate winter hemisphere testifies on a reversal of plasma fluxes along the magnetic field line by the solar terminator. The ionospheric weather W-index is derived from NmF2 (related with foF2) and TECgps data. It is found that symmetry of W-index behavior in the magnetic conjugate hemispheres is dominant for the equinoxes when plasma movement along the magnetic line of force is imposed on symmetrical background electron density and electron content. Asymmetry of the ionospheric storm effects is observed for solstices when the plasma diffuse down more slowly into the colder winter hemisphere than into the warmer summer hemisphere inducing either plasma increase (positive phase) or decrease (negative phase of W-index) in the ionospheric and plasmaspheric plasma density.  相似文献   

12.
After a first oblique-incidence ionospheric sounding campaign over Central Europe performed during the period 2003–2004 over the radio links between Inskip (UK, 53.5°N, 2.5°W) and Rome (Italy, 41.8°N, 12.5°E) and between Inskip and Chania (Crete, 35.7°N, 24.0°E), new and more extensive analysis of systematic MUF measurements from January 2005 to December 2006 have been performed. MUF measurements collected during moderately disturbed days (17 ? Ap ? 32), disturbed days (32 < Ap ? 50) and very disturbed days (Ap > 50), have been used to test the long term prediction models (ASAPS, ICEPAC and SIRM&LKW), and the now casting models (SIRMUP&LKW and ISWIRM&LKW). The performances of the different prediction methods in terms of r.m.s are shown for selected range of geomagnetic activity and for each season.  相似文献   

13.
A new set of data obtained at low solar activity from Ilorin, Nigeria (geog. latitude 8.5°N, geog longitude, 4.6°E, dip 4.1°S) is used to validate the IRI 2001 model at low solar activity. The results show in general a good agreement between model and observed B0 at night but an over estimation during daytime. The overestimation is greatest during the morning period (0600LT–1000LT). The model prediction for B1 is fairly good at night and during the day. A dependence of B0 on solar zenith angle χ is observed during the daytime. A formulation of the form B0 = A[cos(χ)n] is therefore proposed. Values of the constants n and A were determined for the period of low solar activity for this station.  相似文献   

14.
Bottom side electron density profiles for two stations at the southern crest of the Equatorial Ionization Anomaly (EIA), São José dos Campos (23.1°S, 314.5°E, dip latitude 19.8°S; Brazil) and Tucumán (26.9°S, 294.6°E, dip latitude 14.0°S; Argentina), located at similar latitude and separated by only 20° in longitude, have been compared during equinoctial, winter and summer months under low (year 2008, minimum of the solar cycle 23/24) and high solar activity (years 2013–2014, maximum of the solar cycle 24) conditions. An analysis of parameters describing the bottom side part of the electron density profile, namely the peak electron density NmF2, the height hmF2 at which it is reached, the thickness parameter B0 and the shape parameter B1, is carried out. Further, a comparison of bottom side profiles and F-layer parameters with the corresponding outputs of IRI-2012 and NeQuick2 models is also reported. The variations of NmF2 at both stations reveal the absence of semi-annual anomaly for low solar activity (LSA), evidencing the anomalous activity of the last solar minimum, while those related to hmF2 show an uplift of the ionosphere for high solar activity (HSA). As expected, the EIA is particularly visible at both stations during equinox for HSA, when its strength is at maximum in the South American sector. Despite the similar latitude of the two stations upon the southern crest of the EIA, the anomaly effect is more pronounced at Tucumán than at São José dos Campos. The differences encountered between these very close stations suggest that in this sector relevant longitudinal-dependent variations could occur, with the longitudinal gradient of the Equatorial Electrojet that plays a key role to explain such differences together with the 5.8° separation in dip latitude between the two ionosondes. Furthermore at Tucumán, the daily peak value of NmF2 around 21:00 LT during equinox for HSA is in temporal coincidence with an impulsive enhancement of hmF2, showing a kind of “elastic rebound” under the action of the EIA. IRI-2012 and NeQuick2 bottom side profiles show significant deviations from ionosonde observations. In particular, both models provide a clear underestimation of the EIA strength at both stations, with more pronounced differences for Tucumán. Large discrepancies are obtained for the parameter hmF2 for HSA during daytime at São José dos Campos, where clear underestimations made by both models are observed. The shape parameter B0 is quite well described by the IRI-2012 model, with very good agreement in particular during equinox for both stations for both LSA and HSA. On the contrary, the two models show poor agreements with ionosonde data concerning the shape parameter B1.  相似文献   

15.
This is to investigate ways of improving the Equatorial F2-layer peak heights estimated from M(3000)F2 ionosonde data measured using the Ionospheric Prediction Service (IPS-42) sounder at Ouagadougou, Burkina Faso (Latitude +12.4°N, Longitude +1.5°W, Dip latitude +5.9°N) during a low solar activity year (1995). For this purpose, we have compared the observed hmF2 (hmF2obs) deduced using an algorithm from scaled virtual heights of quiet day ionograms and the predicted hmF2 values which is given by the IRI 2007 model (hmF2IRI 2007) with the ionosonde measured M(3000)F2 estimation of the hmF2 values (hmF2est) respectively. The correlation coefficients R2 for all the seasons were found to range from 0.259 to 0.692 for hmF2obs values, while it ranges from 0.551 to 0.875 for the hmF2IRI 2007 values. During the nighttime, estimated hmF2 (hmF2est) was found to be positively correlated with the hmF2obs values by the post-sunset peak representation which is also represented by the hmF2IRI 2007 values. We also investigated the validity of the hmF2est values by finding the percentage deviations when compared with the hmF2obs and hmF2IRI 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号