首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new upper limit value (9.9 × 10?21cm2) of the mean equivalent de-excitation cross-section of O(3P1) by collision with neutral particles in the thermosphere is obtained by comparing the3P1 state de-excitation rate due to neutral practice impact with that due to electron impact. The existing data of the cross-section obtained from the aeronomic study are compared with the theoretical data, and it indicated that the former is much less than the latter.  相似文献   

2.
A possible quantitative explanation of the semi-annual variation in thermospheric density has been obtained in terms of a semi-annual variation in the computed globally averaged vertical energy carried by propagating tides from the lower and middle atmosphere into the thermosphere. The effect is primarily due to seasonal changes in the distribution of water vapor and in the solar declination angle and Sun-Earth distance. An MSIS-83 empirical model of the thermosphere, representing a revision of the earlier MSIS models, has been prepared. The database used covers a wider range of solar activity than previous models and an improved magnetic storm representation is included. Atomic oxygen profiles in the 100 to 160 km altitude region of the auroral thermosphere have been recalculated from measured quenching of N2(A3u+) using the latest laboratory rates and the results are in good agreement with the mean CIRA 1972 profile. A new empirical model of thermospheric variations with geomagnetic activity has been developed incorporating variations with local magnetic time, latitude dependent terms which can vary with the magnitude of the geomagnetic disturbance, and an altitude dependent expression for the equatorial wave. A new index ML, derived from the AL index, has been developed that appears to have promise to represent the variations of thermospheric species with geomagnetic activity. Satellite measured values of solar UV flux, ground-based observations of CaK plages, sunspot numbers and 10.7 cm solar radio flux have been analyzed for temporal variations. Some differences have been identified and the significance to empirical and theoretical upper atmosphere models is discussed.  相似文献   

3.
The plausible mechanisms of cooling of the nightside Venus' thermosphere are analysed with the aid of the model of the atmospheric heat budget that incorporates, in addition to thermal conduction and IR radiation in the 15 μ band of CO2, heating and cooling due to global scale winds, eddy turbulence, and IR radiation in the rotational bands of H2O and CO, as well as the 63 μ line of atomic oxygen. The H2O mixing ratio and parameters of turbulence required for cooling of the thermosphere down to the observed low temperatures are evaluated.  相似文献   

4.
The dissipation of energy of electric fields and currents in the polar auroral atmosphere is a major source of energy for the thermosphere ranging locally up to 100 ergs cm?2 sec?1 and perhaps more during the most intense disturbance. Globally the input of energy to the thermosphere can often exceed that due to solar EUV radiation. This energy source is always significant in polar regions and its variable strength with respect to that of the solar EUV radiation determines the behaviour of the middle and low latitude thermosphere. It is extremely difficult to model because of its variability in space and time. Nevertheless understanding the dynamics and composition of the global thermosphere is dependent upon incorporation of this source realistically into models. A further important aspect of this energy source is the consequences of its action in changing the density and composition of the thermosphere globally leading to subsequent changes in the absorption of solar EUV radiation. The ring current may also, at times, be a significant source of energy to the low latitude thermosphere.  相似文献   

5.
6.
The magnitude, dissipation mechanism, and spatial distribution of the solar wind - magnetospheric energy source are discussed briefly. Using N2 measurements of the ESRO 4 satellite, the temperature increase in the polar thermosphere associated with this energy source are investigated. Part of the locally dissipated energy is transported toward lower latitudes. Possible modes of energy transfer are reviewed, and local time variations are documented. Some suggestions are made with respect to future empirical models of the thermosphere.  相似文献   

7.
Based on a simplified theoretical interpretation of the composition measurements with the ONMS and OIMS experiments on Pioneer Venus, the conclusion was drawn that the rotation rate of the thermosphere should be close (within a factor of two) to that of the lower atmosphere. A more realistic three-dimensional model of the thermosphere dynamics is now being developed, considering non-linear processes, higher order modes and collisional momentum exchange between the major species CO2, CO and O, which describes the diurnal variations in temperature and composition (Niemann et al., JGR, 1980). The computed horizontal winds are about 300 m/sec near the terminators and poles. Results are also presented from a two-dimensional (quasi-axisymmetric) spectral model which describes the four day superrotation in the lower atmosphere of Venus.  相似文献   

8.
This paper presents the results of the numerical calculations thermosphere/ionosphere parameters which were executed with using of the Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP)and comparison of these results with empirically-based model IRI-2001. Model GSM TIP was developed in West Department of IZMIRAN and solves self-consistently the time-dependent, 3-D coupled equations of the momentum, energy and continuity for neutral particles (O2, N2, O), ions (O+, H+), molecular ions (M+) and electrons and largescale eletric field of the dynamo and magnetospheric origin in the range of height from 80 km to 15 Earth’s radii. The empirically derived IRI model describes the E and F regions of the ionosphere in terms of location, time, solar activity and season. Its output provides a global specification not only of Ne but also on the ion and electron temperatures and the ion composition. These two models represent a unique set of capabilities that reflect major differences in along with a substantial approaches of the first-principles model and global database model for the mapping ionosphere parameters. We focus on global distribution of the Ne, Ti, Te and TEC for the one moment UT and fixed altitudes: 110 km, hmF2, 300 km and 1000 km. The calculations were executed with using of GSM TIP and IRI models for August 1999, moderate solar activity and quiet geomagnetic conditions. Results present as the global differences between the IRI and GSM TIP models predictions. The discrepancies between model results are discussed.  相似文献   

9.
Measurements of the density and composition of the thermosphere between 150 and 500 km, which were obtained by the S3-1 satellite, have been compared with the Jacchia and MSIS models. The measurements of the densities of O, N2, N and Ar show some differences from the current models which should be considered during the preparation of the next CIRA model. The Ar measurements are particularly useful in examining the response of the neutral atmosphere to geomagnetic heating. These results are useful in establishing the appropriate lower boundary conditions for modeling of the thermosphere.  相似文献   

10.
Nitric Oxide is a very important trace species which plays a significant role acting as a natural thermostat in Earth’s thermosphere during strong geomagnetic activity. In this paper, we present various aspects related to the variation in the NO Infrared radiative flux (IRF) exiting the thermosphere by utilizing the TIMED/SABER (Thermosphere Ionosphere Mesosphere Energetics and Dynamics/ Sounding of the Atmosphere using Broadband Emission Radiometry) observational data during the Halloween storm which occurred in late October 2003. The Halloween storm comprised of three intense-geomagnetic storms. The variability of NO infrared flux during these storm events and its connection to the strength of the geomagnetic storms were found to be different in contrast to similar super storms. The connection between the quantum of energy outflux from the upper atmosphere into space in terms of NO IRF and the duration of storms is established. The NO radiative cooling, and the closely correlated depletion in O/N2 ratio are controlled by the Joule heating intensity (proxied by AE-index). The collisional excitation rate of NO, calculated using the modelled datasets of WACCM-X (Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension), correlates well with the observed pattern of radiative emission by NO. Observational datasets from TIMED/GUVI (Global Ultra-Violet Imager) and MIT Haystack observatory madrigal GNSS (Global navigation satellite system) total electron content (TEC) database shows that the TEC and O/N2 enhancement in low-mid northern hemispheric latitudes are mainly controlled by the z-component of Interplanetary magnetic field (IMF-Bz). The penetration of eastward electric field during the storm events is found to be responsible for the overall enhancement of TEC. The contribution of enhanced day-side TEC in observed variation of O/N2 ratio by GUVI is also reported. It is also seen that during substorms related events the night-time polar region experiences more cooling due to NO than the daytime polar region. The connections between the mid- and low-latitude enhancement in NO IRF with the propagation of LSTIDs (Large-scale traveling ionospheric disturbances) in combination with the O/N2 variability, and the altitudinal variation in NO flux with the progression of the storm is also investigated. This study presents the evidence on the role of diffusion processes in the large scale enhancement of NO in the mesospheric altitudes.  相似文献   

11.
As part of the MAP/WINE Campaign 1983/84 a liquid helium cooled infrared grating spectrometer measured night zenith radiances of CO2, O3, and H2O in the mesosphere and lower thermosphere. From a comparison of the measured spectral radiances with results from LTE radiative transfer calculations atmospheric temperatures and concentration profiles of H2O and O3 were determined, showing some interesting features. The ozone densities obtained appear to contradict model predictions based upon the assumption that ozone is in photochemical equilibrium at mesospheric heights. Since the ozone density distribution shows quite similar structures as the vertical wind profile, transport effects seem to play a major role in the mesospheric ozone formation.  相似文献   

12.
This paper reports the response of the ionosphere–thermosphere system to an intense geomagnetic storm. For that, data taken by instruments on board Dynamic Explorer 2 at heights of the F2-layer (molecular nitrogen N2 and atomic oxygen O compositions, neutral temperature Tg and electron density Ne) were used. The ionospheric response is characterized by a negative storm effect expanding from mid–high to low latitude. It is observed during this severe geomagnetic storm that negative effects were caused mainly by an increase in molecular nitrogen composition N2 and almost no changes in atomic oxygen composition O.  相似文献   

13.
The diurnal tide in the mesosphere and lower thermosphere (MLT) shows large seasonal and interannual variations. Despite recent modeling investigations, the underlying physical mechanisms for causing these variations remain unclear. This paper provides further observational constraints to tide-sensitive variables (H2O, O3, and gravity wave variances) used by the models, which are obtained simultaneously by upper atmosphere research satellite microwave limb sounder at altitudes below the MLT region. The strong quasi biannual oscillation and semiannual oscillation variations in these measurements reveal good correlations between the diurnal tide with other tide-sensitive variables, which should be taken into account for further modeling studies.  相似文献   

14.
A brief review is given of our current understanding of the atmospheric perturbations in the thermosphere and exosphere that are related to geomagnetic disturbances and of current efforts to represent these in empirical models of the upper atmosphere. A particular model, based on ESRO4 mass spectrometer observations of neutral composition and density, is presented in detail. This model gives the effects on the principal constituents of the upper atmosphere as a function of the geomagnetic coordinates and the Kp geomagnetic index. It is a modification of an earlier model, the most important difference being the inclusion of the variation with magnetic local time.  相似文献   

15.
This paper examines the response of the high latitude ionosphere–thermosphere system during two intense geomagnetic storms. For that, data taken by instruments on board Dynamic Explorer 2 taken at heights of the F2-layer are used. These results represent a comparison of simultaneous measurements of storm disturbances in gas composition, electron density and temperature in common local time sectors. Documented are an increase in electron temperature and a decrease in electron density; increases both in electron temperature and electron density; and the correlation between electron density decreases and increases in the ratio N2/O. It is noticed that the decrease in electron density is sometimes due to an increase in the molecular nitrogen density N2 and not always is attributed both to the increase in N2 density and the simultaneous decrease in the atomic oxygen density.  相似文献   

16.
The turbulent diffusivity around the turbopause is deduced from the parameters of ionospheric sporadic E /Es/ and atmospheric models assuming the validity of the wind-shear theory of mid-latitude sporadic E. It has been found that during circulation disturbances in the lower thermosphere connected with stratospheric warmings the turbulent diffusivity appears to decrease. The results obtained so far indicate that the characteristic events of the winter months are shown not only by the large scale dynamics in the lower thermosphere, but also by the small scale phenomena and thus the turbulent diffusivity could contribute to the development of the winter anomaly.  相似文献   

17.
Radiative cooling in the mesosphere and lower thermosphere is predominantly from 15-μm emissions of CO2. Above t 120 km, complete NLTE cooling from NO becomes more important. Above 100 km, both the CO2 and the NO cooling are proportional to concentrations of atomic oxygen which are dynamically controlled and poorly characterized by observations. Furthermore, the rate for energy exchange between O and CO2(ν2 = 1) is very poorly known. CO2 is close to LTE throughout the mesosphere, but small departures from LTE between 65 and 80 km may be important for questions of remote sensing. Remote sensing for trace gases, e.g., O3 and H2O, must consider NLTE effects in the mesosphere. A global mean column model for aeronomy processes above 65 km gives a reasonable agreement with observed temperatures, suggesting that radiative balance may be possible without the need for including eddy cooling or gravity wave heating.  相似文献   

18.
The yearly variation of the integrated emission rate of the O(1S) nightglow in the lower thermosphere is studied and the solar cycle impact is examined from the observations of the Wind Imaging Interferometer (WINDII) operated on the Upper Atmosphere Research Satellite (UARS). More than 300,000 volume emission rate profiles of the O(1S) nightglow observed by WINDII for 40°S–40°N latitudes during November 1991–August 1997 over half of a solar cycle are utilized. These profiles are vertically integrated for the altitude range of 80–100 km and the equivalent column integrated emission rates are then zonally averaged for bins with 10° latitude and 3 month intervals. It is found that for each latitude the O(1S) nightglow emission rate appears to increase with increasing solar F10.7 cm flux, following a linear relationship. This characterizes the solar cycle impact on the O(1S) nightglow, while the solar influence is modulated by a seasonal variation. Based on these variations, an empirical formula is derived for predicting the three-month averages of the O(1S) nightglow integrated emission rate. The standard error of the estimated values from the formula is smaller than 30 Rayleigh.  相似文献   

19.
The observation of infrared absorption lines by means of a grille spectrometer on board Spacelab 1 allows the determination of Co2 and CO in the low thermosphere and in the middle atmosphere. Equal abundances of CO and CO2 are found at 115 ± 5 km altitude. CO2 is observed to depart from its homospheric volume mixing ratio near 100 km, dropping by a factor of 10,15 km higher. The CO largest number density is observed near 70 km altitude, close to the H Lyman alpha photoproduction peak.The analysis of one run dedicated to the observation of water vapor shows a middle atmospheric mixing ratio of this species within the limits : 3 to 8 ppmv up to 70 km altitude, with the indication of an increase from 30 to 50 km altitude. The H2O mixing ratio drops very rapidly above 70 km.The comparison of the results from strong and weak H2O and CO2 lines shows the need to refine the line profile model.  相似文献   

20.
A differential emission measure technique is used to determine flare spectra using solar observations from the soft X-ray instruments aboard the Thermosphere Ionosphere Mesosphere Energetics Dynamics and Solar Radiation and Climate Experiment satellites. We examine the effect of the solar flare soft X-ray energy input on the nitric oxide (NO) density in the lower thermosphere. The retrieved spectrum of the 28 October 2003 X18 flare is input to a photochemical thermospheric NO model to calculate the predicted flare NO enhancements. Model results are compared to Student Nitric Oxide Explorer Ultraviolet Spectrometer observations of this flare. We present results of this comparison and show that the model and data are in agreement. In addition, the NO density enhancements due to several flares are studied. We present results that show large solar flares can deposit the same amount of 0.1–2 and 0.1–7 nm energy to the thermosphere during a relatively short time as the Sun normally deposits in one day. The NO column density nearly doubles when the daily integrated energy above 5 J m−2 is doubled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号