首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Observations in the far ultraviolet and soft x-ray bands suggest that the interstellar medium contains several components of high temperature gas and should be emitting in the extreme ultraviolet. Indeed diffuse radiation has been detected in the extreme ultraviolet with photometric instruments, but no spectral measurements exist below 520Å. We have designed a unique grazing incidence spectrometer to study the diffuse emission between 80 and 650Å with 10 to 20Å resolution. The instrument was launched on a Black Brant sounding rocket from White Sands Missile Range on April 22, 1986. Our preliminary analysis shows the expected geocoronal and interplanetary HeI 584Å emission, and possibly other features which may originate in the hot ionized interstellar gas. Flux limits to these possible emission lines are compatible with previous broad band measurements.  相似文献   

2.
We report the discovery of highly ionized line emission from CIVλ1550Å, OIII] λ1663Å, and OVI/SiIV λ1400Å, observed by the Berkeley UVX experiment on Shuttle mission 61-C. The CIV and OIII] lines were detected in 4 out of 8 directions, and the OVI/SiIV in 2 directions. The CIV line intensity exhibits a definite anticorrelation with HI column density, and shows significant pole brightening (a factor of 5 at least). There is evidence that the gas is not isothermal. When compared to observed CIV absorption column densities, we derive intrinsic densities of .01–.05 cm−3, and pressure p/k=1000–8000 (T/10 sup 5 K) cm−3 K, assuming the gas has a scale height of 2 kpc. Much higher densities and pressures are indicated if the gas is local (100–200 pc), which would give pressures in violation of canonical limits. Finally, we show that photoionized models, which break down at high densities because of charge exchange with HI, are inconsistent with the observed densities.  相似文献   

3.
The storm-time HI(1216Å), OI(1304Å), OI(1356Å) emission lines and NO molecule γ (1,1) band computed from the onboard Intercosmos-Bulgaria-1300 measurements are examined. The auroral particles and ring current development are discussed as possible sources of the observed storm-time intensity increase over the theoretical intensity-solar zenith angle dependencies in the evening-midnight sector.  相似文献   

4.
A Brazilian sounding rocket, SONDA III, with two airglow photometers and two ionospheric electron density probes, was launched successfully from Natal (5.8°S, 35.2°W), Brazil, on December 11, 1985, at 23:30 GMT. The observed height profiles of the atomic oxygen OI 5577Å and molecular oxygen Atmospheric (0,0) band at 7619Å emissions are discussed. This is the first simultaneous measurement of these emissions in the equatorial region. A preliminary analysis shows that the two emissions have peak emission heights located between 95 and 96 km, and their half widths are about 6 km. The O2A 7619Å emission peak, however, is located slightly lower, less than 1 km, than that of the OI 5577Å emission.  相似文献   

5.
The M1.5-class flare and associated coronal mass ejection (CME) of 16 February 2011 was observed with the Extreme ultraviolet Imaging Spectrometer on board the Hinode spacecraft. Spray plasma associated with the CME is found to exhibit a Doppler blue-shift of 850 km s?1 – one of the largest values reported from spectroscopy of the solar disk and inner corona. The observation is unusual in that the emission line (Fe xii 193.51 Å) is not observed directly, but the Doppler shift is so large that the blue-shifted component appears in a wavelength window at 192.82 Å, intended to observe lines of O v, Fe xi and Ca xvii. The Fe xii 195.12 Å emission line is used as a proxy for the rest component of 193.51 Å. The observation highlights the risks of using narrow wavelength windows for spectrometer observations when observing highly-dynamic solar phenomena. The consequences of large Doppler shifts for ultraviolet solar spectrometers, including the upcoming Multi-slit Solar Explorer (MUSE) mission, are discussed.  相似文献   

6.
For the distant giant planets, Uranus and Neptune, the observation of aurorae may be the best astronomical technique for the detection of planetary magnetic fields, with implications for the structure and composition of their interiors. Aurorae may be detected by emssion of H I Ly α (1216 Å) and by H2 bands near 1600 Å. The latter are important for very faint aurorae because there is essentially no planetary, interplanetary or geocoronal scattering of sunlight to contaminate the signal. For Uranus, present IUE results suggest the presence of a strong aurora at Ly α, but the background and instrument noise levels are very high compared to the apparent signal. At 1600 Å, the IUE instrument noise renders the H2 emission bands on Uranus marginal at best. No aurora has yet been observed on Neptune. For Jupiter, where the existence and general characteristics of the magnetic field are well established, there is disagreement between ground-based infrared and space-borne ultraviolet observations of the location of the aurorae. For all four giant planets, Space Telescope can improve upon the quality of current optical observations. For spectroscopy, the low resolution mode of the High Resolution Spectrograph (HRS) is particularly well suited to auroral observations because of its spectral range, adequate resolution and high sensitivity. For ultraviolet imaging through appropriate filters, the ST spatial resolution, expected to be of order 5 hundredths of an arc second, is also well suited to determine the spatial properties of the aurorae.  相似文献   

7.
In April 1972 OAO-2 obtained broadband filter measurements of the Galilean satellites from 2100 to 4300 Å. All four bodies were shown to have low albedos declining towards shorter wavelengths, thus constraining the proportions of their surfaces that could be covered by reflective frosts. Although the vast data return from Voyager spacecraft has for the first time permitted a detailed comparison of Galilean satellites with terrestrial planets, it has not removed the need for continuing long time-base observations of the former. Since January 1978, IUE has repeatedly obtained Galilean spectra within the range 1150 to 3200 Å. Observations of Io have placed an upper limit on the global abundance of SO2 in its atmosphere. Spectral variations with phase have allowed spatial mapping of surface reflectance in the case of Io, and may enable volcanic activity to be monitored.  相似文献   

8.
Imaging studies have shown that ∼ 25% of LINER galaxies display a compact nuclear UV source. I compare the HST ultraviolet (1150–3200 Å) spectra that are now available for seven such “UV-bright” LINERs. The spectra of NGC 404, NGC 4569, and NGC 5055 show clear absorption-line signatures of massive stars, indicating a stellar origin for the UV continuum. Similar features are probably present in NGC 6500. The same stellar signatures may be present but undetectable in NGC 4594, due to the low signal-to-noise ratio of the spectrum, and in M81 and NGC 4579, due to superposed strong, broad emission lines. The compact central UV continuum source that is observed in these galaxies is a nuclear star cluster rather than a low-luminosity active galactic nucleus (AGN), at least in some cases. At least four of the LINERs suffer from an ionizing photon deficit, in the sense that the ionizing photon flux inferred from the observed far-UV continuum is insufficient to drive the optical H I recombination lines. Examination of the nuclear X-ray flux of each galaxy shows a high X-ray UV ratio in the four “UV-photon starved” LINERs. In these four objects, a separate component, emitting predominantly in the extreme-UV, is the likely ionizing agent, and is perhaps unrelated to the observed nuclear UV emission. Future observations can determine whether the UV continuum in LINERs is always dominated by a starburst or, alternatively, that there are two types of UV-bright LINERs: starburst-dominated and AGN-dominated. Interestingly, recent results show that starbursts dominate the nuclear energetics in many Seyfert 2s as well.  相似文献   

9.
The region of South Atlantic Geomagnetic Anomaly (SAGA) was investigated by the Intercosmos-Bulgaria-1300 satellite, launched on August 7, 1981. On the basis of data obtained from 15 orbits during increased geomagnetic activity in August 1981, a map of the Anomaly was elaborated. Two centres of activity were identified. By means of the EMO-5 electrophotometer on board the Intercosmos-Bulgaria-1300 satellite, the atmosphere glow in lines λ 5577 Å, λ 6300 Å and λ 4278 Å was studied.  相似文献   

10.
The Extreme Ultraviolet Explorer (EUVE) Mission is described. The purpose of this mission is to search the celestial sphere for astronomical sources of extreme ultraviolet (EUV) radiation (100–1000Å). The search will be accomplished with the use of three EUV telescopes, each sensitive to different bands within the EUV band. A fourth telescope will perform a high sensitivity search of a limited sample of the sky in a single EUV band. In six months, the entire sky will be scanned at a sensitivity level comparable to existing surveys in other more traditional astronomical bandpasses. A substantial number of EUV sources such as hot white dwarfs and stellar coronae are certain to be discovered given our current knowledge. More uncertain is what entirely new classes of objects will be discovered as EUV sources. A moderate resolution (~ 5Å) spectroscopy option is being considered which would cover the band from 80 to 600Å. This instrument would be capable of providing spectra of at least the 100 brightest EUV sources and would be utilized entirely on a Guest Investigator basis.  相似文献   

11.
Nitric Oxide is a very important trace species which plays a significant role acting as a natural thermostat in Earth’s thermosphere during strong geomagnetic activity. In this paper, we present various aspects related to the variation in the NO Infrared radiative flux (IRF) exiting the thermosphere by utilizing the TIMED/SABER (Thermosphere Ionosphere Mesosphere Energetics and Dynamics/ Sounding of the Atmosphere using Broadband Emission Radiometry) observational data during the Halloween storm which occurred in late October 2003. The Halloween storm comprised of three intense-geomagnetic storms. The variability of NO infrared flux during these storm events and its connection to the strength of the geomagnetic storms were found to be different in contrast to similar super storms. The connection between the quantum of energy outflux from the upper atmosphere into space in terms of NO IRF and the duration of storms is established. The NO radiative cooling, and the closely correlated depletion in O/N2 ratio are controlled by the Joule heating intensity (proxied by AE-index). The collisional excitation rate of NO, calculated using the modelled datasets of WACCM-X (Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension), correlates well with the observed pattern of radiative emission by NO. Observational datasets from TIMED/GUVI (Global Ultra-Violet Imager) and MIT Haystack observatory madrigal GNSS (Global navigation satellite system) total electron content (TEC) database shows that the TEC and O/N2 enhancement in low-mid northern hemispheric latitudes are mainly controlled by the z-component of Interplanetary magnetic field (IMF-Bz). The penetration of eastward electric field during the storm events is found to be responsible for the overall enhancement of TEC. The contribution of enhanced day-side TEC in observed variation of O/N2 ratio by GUVI is also reported. It is also seen that during substorms related events the night-time polar region experiences more cooling due to NO than the daytime polar region. The connections between the mid- and low-latitude enhancement in NO IRF with the propagation of LSTIDs (Large-scale traveling ionospheric disturbances) in combination with the O/N2 variability, and the altitudinal variation in NO flux with the progression of the storm is also investigated. This study presents the evidence on the role of diffusion processes in the large scale enhancement of NO in the mesospheric altitudes.  相似文献   

12.
The intensity of continua and emission lines which form the solar UV spectrum below 2100 Å is variable. Continua and emission lines originating from different layers in the solar atmosphere show a different degree of variability. Coronal emission lines at short wavelengths are much more variable than continua at longer wavelengths which originate in lower layers of the solar atmosphere. Typical time-scales of solar UV variability are minutes (flare induced), days (birth of active regions), 27 days (solar rotation), 11 years (solar cycle) and perhaps centuries, caused by long-term changes of the solar activity. UV intensity variations have been determined by either absolute irradiance measurements or by contrast measurements of plages vs. the quiet sun. Plages are the main contributor to the solar UV variability. Typical values for the solar UV variability over a solar cycle are: <1% at wavelengths longer than 2100 Å, 8% at 2080 Å (continuum), 20% at 1900 Å (continuum), 70% at H Lyα, 200% in certain emission lines 1200 < λ < 1800 Å and more than a factor of 4 in coronal lines λ < 1000 Å. Plage models predict the variable component of the solar UV radiation within ±50%. Absolute fluxes are known within ±30%. Several efforts are underway to monitor the solar UV irradiance with a precision better than a few percent over a solar activity cycle.  相似文献   

13.
A number of new high efficiency optical coatings have recently been developed at wavelengths in the ultraviolet and vacuum ultraviolet for use in space science experiments. The development of these coatings has resulted in the design and manufacture of wavelength selective filters used in reflectance at near normal incidence that have high VUV reflectance with little near-UV and visible reflectance. Very narrow band transmission filters are now available at wavelengths as short as 1500Å with bandwidths as narrow as 35–40Å. In addition, high efficiency anti-reflection coatings as well as neutral density filters are now available at many wavelengths in this region.Material limitations, more severe than those in the visible, place certain restrictions on the size, wavelength, and degree of selectivity that is achievable with present technology. A summary of the current commercial technology along with the material limitations is presented.  相似文献   

14.
The Ultraviolet Coronagraph Spectrometer on the Solar and Heliospheric Observatory, UVCS/SOHO, and the Ultraviolet Coronal Spectrometer on the Spartan 201 satellite, UVCS/Spartan, have been used to measure H I 1215.67 Å line profiles in polar coronal holes of the Sun at projected heliocentric heights between 1.5 and 3.0 R. UVCS/SOHO also measured line profiles for H I 1025.72 Å, O VI 1032/1037 Å, and Mg X 625 Å. The reported UVCS/SOHO observations were made between 5 April and 21 June 1996 and the UVCS/Spartan observations were made between 11 and 12 April 1993. Both sets of measurements indicate that a significant fraction of the protons along the line of sight in coronal holes have velocities larger than those for a Maxwellian velocity distribution at the expected electron temperature. Most probable speeds for O5+ velocity distributions along the lines of sight are smaller than those of H0 at 1.5 R, are comparable at about 1.7 R and become significantly larger than the H0 velocities above 2 R. There is a tendency for the O5+ line of sight velocity distribution in concentrations of polar plumes to be more narrow than those in regions away from such concentrations. UVCS/SOHO has identified 31 spectral lines in the extended solar corona.  相似文献   

15.
The International Ultraviolet Explorer (IUE) has provided both improved spectral resolution and some spatial resolution for UV observations of Jupiter. Previous satellite observations have produced albedo curves for Jupiter showing the influence of Rayleigh scattering, and of some absorber(s) shortward of 2500Å on the UV spectrum. Constraints on the abundance of several minor constituents of the Jovian atmosphere were derived from the OAO-2 data. The IUE low dispersion data has a resolution of 8Å, making it possible to detect individual molecular features. A series of C2H2 absorptions in the 1750Å region have been identified, and indications of NH3 absorptions are present in the 1950Å region.  相似文献   

16.
Deep 66° field photographs of the sky have been taken by the SL - 1 Very Wide Field Camera (experiment 1-ES-022) at 1650, 1930 and 2530 Å, with a limiting magnitude of 9.3 at 1930 Å. A 1,2 × 2,4Kpc ultraviolet extension of the Shapley's wing of the small Magellanic Cloud is revealed.  相似文献   

17.
18.
A panoramic view of the nightglow atmospheric emission in the 780–1000 nm spectral range is constructed using CCD images taken at the Pic de Châteaurenard (Altitude 2989 m, Hautes-Alpes) on July 14–15, 1999. A set of 28 images each having a 36° × 36° field of view is assembled to form a panorama covering 360° in azimuth and extending from the horizon to the zenith. Each photograph is processed in order to invert the perpective effect assuming that the emission comes from a thin layer located at the altitude of 85 km. The effect of refraction is calculated and taken into account. The stars are removed using a numerical filter. The inverted panorama appears as a disk having a radius equal to 1100 km. It is comparable to a satellite view of the emissive layer. A wave system extends in the W-NW to E-SE direction over more than 2200 km. A second set of 30 successive images of the same field of view taken on May 18–19, 1998 is used to determine the wave parameters. The main horizontal wavelength is equal to 42 km and the horizontal phase velocity has a value of 40 ± 2 m.s−1. The images show that the atmospheric OH emission is a tracer of the dynamics of the atmosphere at the level where the excited OH radicals are produced. The OH* radical population depends upon its quenching by O, O2 and N2. As a result, the emission intensity is a function of the air temperature and density which are subject to variations due to gravity and windshear waves and other dynamic processes such as tides and turbulence.  相似文献   

19.
The HRTS instrument flew on the Spacelab 2 mission from 29 July - 6 August 1985. HRTS consisted of a 30 cm Gregorian telescope, a slit spectrograph covering the 1190–1680 Å region with 0.05 Å spectral resolution, a broadband (90 Å FWHM) spectroheliograph tuned to 1550 Å, and an H-alpha filter system. The spectrograph slit was 920 arc sec, approximately 1 R0, in length. Sub arc second spatial resolution along the slit is possible, but because of jitter in the Spacelab Instrument Pointing System (IPS) good exposures actually achieved 1–2 arc sec resolution. We describe the scientific results from HRTS.  相似文献   

20.
Foreground emission, mainly airglow and zodiacal light, is a significant contributor in an ultraviolet observation especially from low earth orbit. Its careful estimation and removal are tedious yet unavoidable processes in the study of diffuse UV radiation and by extension interstellar dust studies. Our analysis of deep GALEX observations show that airglow is not only a function of Sun angle but also a strong function of Solar activity at the time of observation. We present here an empirical model of airglow emission, derived from GALEX deep observations, as a function of 10.7 cm Solar flux and Sun angle. We obtained the model by training machine learning models on the data using a variant of the regression algorithm that is both resilient toward outlier data and sensitive to the complexities of the provided data. Our model predictions across various observations show no loss in generalization as well as good agreement with the observed values. We find that the total airglow in an observation is the sum of a baseline part (AGc) that depends on the Solar flux and Sun angle, and a variable part (AGv) that depends on the Sun angle and the time of observation with respect to local midnight. We also find that the total airglow can vary between 85 – 390 photon units in FUV and 80 – 465 photon units in NUV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号