首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The Langmuir-probe technique for measurement of electron concentration in the mesosphere is capable of excellent altitude resolution, of order 1 m. Measurements from nine rocket flights frequently show small-scale ionization structures in the altitude region 60–90 km. These are believed to be identical with regions of strong coherent backscatter seem by VHF radars at Jicamarca, Peru and Urbana, Illinois. They are believed to represent intermittent turbulence attributable to nonlinear interaction of waves in the mesosphere. Parameters of the turbulent regions are estimated.  相似文献   

2.
The Indian MST radar facility at Gadanki (13.5°N, 79.2°E) has been utilised to study the propagation of gravity waves from the troposphere/lower stratosphere to the mesosphere and their interaction with the radar backscattered signal variations. The main objective is to correlate vertically propagating gravity waves derived from the tropospheric velocity fields with the dynamics of mesospheric scattering centres. The tropospheric wind velocities and signal strengths over the entire height range have been subjected to power spectral and wavelet analysis to determine the predominant wave periods/amplitudes and the coupling between the lower atmosphere and mesosphere. Results show that (a) the gravity waves are clearly detectable near tropopause heights, (b) while relatively higher period gravity waves (20–50 min) interact with mesospheric scattering centres, the lower period waves (<20 min) are absorbed in the troposphere itself, (c) the mesospheric scattering layers are affected by gravity waves of complementary periods.  相似文献   

3.
At mesospheric heights, VHF radar measurements reveal strong signal power bursts which have the same period as simultaneously observed short-period velocity oscillations. Both the power bursts and the velocity oscillations occur in layers of maximum vertical wind shear generated by tidal or long-period gravity waves with apparent vertical wavelengths of the order of 10 km. A comparison with similar power bursts measured in the troposphere during a jet stream passage leads to the conclusion that the short-period velocity oscillations are due to a Kelvin-Helmholtz instability. This instability in turn generates superadiabatic lapse rates so that strong turbulence can occur which produces the observed signal power bursts.  相似文献   

4.
5.
A new convective gravity wave source spectrum parameterization has been implemented in the Whole Atmosphere Community Climate Model version 2 (WACCM2). This parameterization specifies the momentum flux phase speed spectrum of gravity waves in the Tropics based on the properties of underlying convection; Hence, this parameterization provides realistic global estimates of gravity wave activity. In this paper, we show the estimated gravity wave phase speed spectra in the Tropics from a WACCM2 simulation, at the source level and at 85 km. Spatial distribution of gravity wave activity at 85 km is also presented. Subsequently, we discuss the factors that are primarily responsible for the estimated differences in gravity wave distribution across phase speeds with latitude and asymmetries in direction of gravity wave propagation in the mesosphere. We also examine which of the model assumptions can lead to uncertainties in our estimates of mesospheric gravity wave activity and we discuss how these assumptions provide challenges for comparison with observations of gravity waves in the mesosphere.  相似文献   

6.
Gravity waves with periods close to the Brunt-Väisälä period of the upper troposphere are often observed at mesopause altitudes as short period, quasi-monochromatic waves. The assumption that these short period waves originate in the troposphere may be problematic because their upward propagation to the mesosphere and lower thermosphere region could be significantly impeded due to an extended region of strong evanescence above the stratopause. To reconcile this apparent paradox, an alternative explanation is proposed in this paper. The inclusion of mean winds and their vertical shears is sufficient to allow certain short period waves to remain internal above the stratopause and to propagate efficiently to higher altitudes. A time-dependent numerical model is used to demonstrate the feasibility of this and to determine the circumstances under which the mesospheric wind shears play a role in the removal and directional filtering of short period gravity waves. Finally this paper concludes that the combination of the height-dependent mean winds and the mean temperature structure probably explains the existence of short period, quasi-monochromatic structures observed in airglow images of mesopause region.  相似文献   

7.
已有充分的证据表明, 大气对流层的雷暴迹象是大气中间层重力波活动的显著代表源.在雷暴迹象的上方, 通过火箭已观测到大气中间层出现的热效应, 也已通过雷 达探测到大气平流层出现的上行重力波, 从地面和卫星平台上观察到夜间气辉有序而 成环状的重力波波形. 所有这些实验结果都与位于观测点下方的雷暴活动有紧密联系. 此类雷暴通常主要集中在中国东部沿海以及地球其他沿海海湾地域. 关于此类雷暴对大 气中间层的影响尚未被充分研究和了解. 为能有效地探究其成因, 利用所开发的一个二维计算机数值模型模拟和研究大气对流层的雷暴源所引发的上行重力波, 进而揭示 此类重力波产生的基本物理机理, 及其在大气中间层的能量耗散. 通过模拟研究发现, 雷暴源可以大面积高强度地聚集和释放积雨云的能量, 当这种周期性的对流变化引发大气对流层的不稳定性后, 就会有圆柱体重力波的产生和传播.  相似文献   

8.
MST radar studies at low latitude stations have documented regions in the mesosphere from where enhanced echoes (Low Latitude Mesospheric Echoes (LMEs)) are observed. Such echoes cannot, in general, be explained by considering the dynamical aspects (such as turbulence, winds, waves, etc.) of the region alone. Mesospheric dust/aerosols can enhance the radar echoes considerably and dust is known to exist at all heights and latitudes of the mesosphere. This study investigates the presence of dusty plasma in the mesosphere through the heterogeneous ion-chemistry of the region.Dust of meteoric origin is incorporated in the conventional ion chemistry scheme and the equilibrium height profiles of charged and neutral dust densities corresponding to effective dust sizes (radii) of 1, 10 and 30 nm are computed for the equatorial quiet daytime conditions.The model derived dust density profiles show structures with respect to dust size, height and season that are indicative of the possible role of mesospheric dust in the production/enhancement mechanisms of the LMEs observed over the equatorial station at Gadanki (13.5°N, 79.2°E), India.  相似文献   

9.
We have used the technique suggested by Hocking [Hocking, W. A new approach to momentum flux determinations using SKiYMET meteor radars. Ann. Geophys. 23, 2005.] to derive short period wind variances in the 80–100 km region from meteor radar data. We find that these fluctuating winds, assumed to correspond to gravity waves and turbulence, are closely correlated with the vertical shear of the horizontal tidal winds. This close correlation suggests that in situ wind shear may be a major source of gravity waves and turbulence in the MLT. If this is the case, gravity waves generated in the troposphere and propagating up to the MLT region, generally assumed to constitute an important influence on the climatology of the region, may be a less important source of energy and momentum in the 80–100 km region than has been hitherto believed.  相似文献   

10.
重力波波包在传播过程中的参量激发   总被引:1,自引:0,他引:1       下载免费PDF全文
易帆 《空间科学学报》1998,18(4):313-322
采用数值方法模拟了重力波波包在向上传播过程中的参量激发.结果表明,通过共振相互作用,两个次级波可由噪声水平发展到相当的强度,并拥有可观的空间范围,但两者获得能量的大小不同,说明在一个共振组中,主波的能量传递具有参数选择性.主波包只将部分能量用来激发次级波,在其能量衰减的同时,波包形状也发生强烈的畸变.波包之间的能量传递具有明显的局地性.由于波包能量交换不再具有可逆性,相互作用的特征时间具有特别重要的意义,它代表绝大多数能量传递发生的时间范围.在特征时间之外,波包之间净的能量传递已相当弱.由中间层向低热层传播的重力波,衰变过程和传播过程可以同步完成.共振相互作用不仅能够使波能量在谱空间扩散,而且能使波能量在物理空间扩展.   相似文献   

11.
重力波对中间层和低热层大气环流的影响   总被引:3,自引:2,他引:1  
利用β通道准地转近似大气平均运动方程组,采用重力波线性饱和参量化方法,定性地研究大气重力波对中间层和低热层大气环流的作用.模拟计算得到,大气重力波对平均东西风速可产生100m·s-1/d左右的作用力和产生120 m2/s的湍流扩散,这些作用平衡了Coriolis扭力,导致大气的平均东西风速大大偏离辐射平衡风场,中层顶附近的平均东西风速在冬季(夏季)甚至反转为东风(西风).平均东西风速计算结果与冬季和夏季中频雷达东西风速观测值和大气模式剖面等大致一致.  相似文献   

12.
This review article briefly brings out the historical development of atmospheric sodium (Na) measurements over India and the importance of coordinated measurements with multiple techniques to address physical processes in the Earth's upper atmosphere. These measurements were initiated in the early 1970s by observing Na airglow emission intensities with broad band airglow photometer from Mt. Abu, a low-latitude hill station in India. Considerable amount of night-to-night variations in nocturnal emission intensities of the Na airglow were observed. Later, investigations regarding the dependence with the magnetic activities from the equatorial and low latitudes were carried out and double-humped structures in the nocturnal variation of intensities were reported. With the advent of Na lidar at Gadanki around 2005, the measurements of atmospheric neutral Na atom concentration became possible and more frequent occurrences of sporadic Na layers over the magnetic low latitude station compared to other latitudes were detected indicating the role played by electrodynamics. Later, a possible relationship between E-region field aligned plasma irregularities and the concentration of neutral Na atoms was investigated using coordinated measurements of VHF radar and Na lidar. Further, simultaneous measurements with Na lidar and a narrow band airglow photometer with narrow field of view brought out the importance of coordinated observation wherein the characterization of gravity waves could be carried out and also revealed the importance of collisional quenching due to ambient molecules in the Na airglow emission processes. In addition, combining the ground based measurements of Na lidar and meteor wind radar along with satellite measurements made possible to hypothesize the over-turning Kelvin–Helmholtz billow in the Na layer manifests “C-type” or inverted lambda shape structures in the height-time-concentration map of neutral Na atoms. This review paper presents a synoptic view mostly based on the previously reported observations of Na airglow emission, Na lidar and coordinated Na airglow and Na lidar observations from the Indian sector and highlights the importance of simultaneous measurements of mesospheric Na and its emissions along with satellite-borne measurements to address interesting geophysical processes in the Earth's upper atmosphere.  相似文献   

13.
In this review article we summarize recent results in the coupling of the stratosphere–mesosphere during stratospheric sudden warming (SSW) events. We focus on the role of planetary and gravity waves in driving the middle atmosphere circulation and illustrate the stratosphere–mesosphere coupling during undisturbed wintertime circulation, during an SSW event, and after an SSW event during the formation of an elevated stratopause using simulations of past Arctic and Antarctic winters from the Specified Dynamics version of the Whole Atmosphere Community Climate Model (SD-WACCM). We illustrate the transition of the polar stratopause from being a gravity wave driven phenomena to a planetary wave driven phenomena during SSW events and its subsequent reestablishment and control by gravity waves. We also examine the synoptic structure of the stratosphere, mesosphere, and lower thermosphere using SD-WACCM data fields that show the structure of the vortex during specific dynamical events in both hemispheres. We illustrate the longitudinal asymmetry in the thermal structure in the stratosphere and mesosphere driven by differences in circulation over the polar cap regions during an SSW event. We complement this analysis of the middle atmosphere circulation with a classification of both the Arctic and Antarctic winters since 1979 into major, minor, elevated stratopause or quiet winters based on the level of disturbance using the Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis data. From the MERRA data we find that the combined occurrences of both major and minor warmings in the Arctic have remained constant over the past three decades while we find a minor increase in their occurrences in the Antarctic.  相似文献   

14.
An all-sky optical imager is in routine observation at the South Pole. Monochromatic images of aurora and air glow at N2+ 427.8nm, OI 557.7nm, OI 630nm and OH 730nm are supplying significant information on the magnetospheric process in the polar cap and cusp/cleft region along with atmospheric wave signature at this particular point. SuperDARN radars in Antarctica make observations over the South Pole.

At Syowa Station, Antarctica, a multi-instrumental observation project is now being implemented for the study of the polar upper atmosphere from the mesosphere to the thermosphere, where complex physical and chemical processes take place making the region very attractive for scientific research. Two HF radars, which are part of SuperDARN radars, have been already installed and started observations. By the end of 1999, all-sky imagers, photo meters, a Na temperature Lidar, an MF radar and a Fabry-Perot interferometer will be introduced and start collecting various physical parameters on a routine basis.

In the Arctic region, we are planning to deploy coordinated ground-based observations with optical, radio and radar sensing of the polar middle and upper atmosphere in conjunction with EISCAT radars. Scientific goals are versatile to shed light on the tangled coupling processes in response to magnetospheric disturbances from above and bi-lateral interactions with high-density lower atmospheric layers. These are outlined in this paper.  相似文献   


15.
胡雄 Igar.  K 《空间科学学报》1999,19(3):226-231
对中纬度中频雷达1997年6月82km高度的小时平均风场数据进行了动态谱分析和双谱分析,得到了中层顶区域谱行为具有多样性和各向异性的特点,以及行星波,潮汐波和重力波之间相位相干的现象,讨论了中层顶行星波,潮汐波和重力波之间存在非线性相互作用的可能性。  相似文献   

16.
Results are presented from recent ionospheric modification experiments in which the EISCAT UHF radar measured the E-region temperature and density response to high power RF heating above Tromsø. A variety of electrojet conditions were encountered during these experiments. In particular, the electron drift velocity varied considerably allowing the heating efficiency of the RF heater to be investigated as a function of electron flow velocity. These observations constitute the first direct investigation of electrojet temperature modifications by high power radio waves and provide a test of a recent theoretical model in which the combined effects of RF heating and of natural plasma turbulence associated with the Farley-Buneman instability have been considered.  相似文献   

17.
大气重力波是临近空间环境主要大气波动之一,对全球环流具有重要影响。卫星上搭载的临边探测器能够探测临近空间大气温度,可用于临近空间大气重力波研究。利用2012-2014年Aura的微波临边探测器(MLS)和TIMED的红外临边探测器(SABER)的探测数据,对20~50 km高度的大气重力波扰动分布特征开展了分析研究,两种观测重力波活动基本一致,重力波随季节、纬度及高度的变化显著。冬季半球高纬度重力波扰动较强,赤道和夏季半球近赤道地区上空也存在明显重力波活动区域,夏季半球高纬度重力波扰动最弱。重力波扰动强度随高度增加。TIMED/SABER重力波扰动强度数值比 Aura/MLS略强。   相似文献   

18.
Planetary and gravity waves contribute significantly to the variability of atmospheric parameters in the middle atmosphere. In the mesosphere and lower thermosphere the wave fluctuations are sufficiently large to often mask the prevailing or mean state of the atmosphere. This review summarizes current knowledge about the motion, temperature and density fields associated with both large and small scale waves and stresses improved understanding that has come from recent ground based, rocket and satellite investigations.  相似文献   

19.
Planetary and gravity waves contribute significantly to the variability of atmospheric parameters in the middle atmosphere. In the mesosphere and lower thermosphere the wave fluctuations are sufficiently large to often mask the prevailing or mean state of the atmosphere. This review summarizes current knowledge about the motion, temperature and density fields associated with both large and small scale waves and stresses improved understanding that has come from recent ground based, rocket and satellite investigations.  相似文献   

20.
Post-sunset and pre-sunrise vertical plasma drifts at the equatorial F-region have been investigated using the HF Doppler radar and ionosonde observations. Observed vertical plasma drift features during the sunrise are found to complement that observed during the evening. The post-sunset vertical plasma drift is characterized by an upward enhancement, a pre-reversal enhancement and a reversal in the drift direction. Similarly, the pre-sunrise plasma drift is characterized by a sudden downward excursion followed by an upward turning. The wavelet analysis of the plasma drift shows the presence of fluctuations in the period range 4–32 min and the short period fluctuations are attributed to the atmospheric gravity waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号