首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The artificial low frequency (LF) signals recorded at topside ionosphere from DEMETER satellite were analyzed in this paper, and the typical diurnal and seasonal variations were illustrated around 162?kHz in electric field spectra. The larger power spectrum density (PSD) values in electric field at local nighttime and in winter season all demonstrate the correlation feature of lower plasma content to higher penetration of LF waves into ionosphere. Around Wenchuan earthquake, the comparison of signal-noise-ratio (SNR) values in electric field with each half month during January to May in 2008 and the same half month in May from 2005 to 2007 revealed their lowest values and small covering area around the preparation region of Wenchuan earthquake in 2008. Combined with other researches in VLF radio waves and geochemical observations from satellite, the interaction of ion accumulation and upward movement from gas-water release at surface might be a key factor to disturb the ionospheric plasma density, and then possibly leading to the decrease of low energy penetration of LF radio waves from the artificial transmitted source at ground.  相似文献   

2.
The ion density measured by the Ionospheric Plasma and Electrodynamics Instrument (IPEI) on board the ROCSAT -1 over the 75°E and 95°E meridian at 600km altitude has been utilized to examine the latitudinal and longitudinal distribution within the Indian sector, in particular, the north-south and east-west asymmetries of the equatorial ionization anomaly (EIA). A longitudinal gradient in ion density at 600?km higher towards 95°E develops during the noontime and afternoon hours when the EIA is at its peak. The density gradient persists till evening hours when pre-reversal enhancements occur. The vertical E?×?B plasma drift velocity measured simultaneously by ROCSAT -1 for the same space-time configuration has also been studied. In addition to diurnal, seasonal and solar activity variations in E?×?B drift velocity, the longitudinal gradient is also observed. The EIA at the altitude of 600?km peaks at different latitudes and are mostly asymmetric about the magnetic equator. From midnight till 0800 LT, the ion density across the equator is nearly uniform in the equinoxes. But in the solstices, the density exhibits a north-south gradient. In the June solstice, density is higher in the northern hemisphere and decreases gradually towards south. The gradient in density reverses in December solstice. Normally, the EIA peaks within 1200 LT and 1600 LT while around 2000 LT, pre-reversal enhancement of ionization occurs affecting the EIA evening structure. The strength of the EIA also exhibits seasonal, year-to-year and hemispheric variations. The longitudinal asymmetry of drift velocity along 75°E and 95°E longitude sectors is the contributing factor behind the observed longitudinal asymmetry in ion density. Significant positive correlation between the strength of the EIA and E?×?B drift is observed in both longitudes.  相似文献   

3.
Stratospheric electrical conductivity measurements have been made from high altitude research balloons at various locations around the world for more than 40 years. In the stratosphere, conductivity changes may indicate changes in aerosol or water vapor content. In this paper, we will compare the short term variation amplitude in data taken at several latitudes from equatorial to polar cap. Short term variations that occur on time scales of weeks to months (105–107 s) can be attributed to Forbush decreases, geomagnetic storms, aerosol injections by volcanos and forest fires, etc. Variations with time scales of minutes to days (103–105 s) can have amplitudes of a factor of ∼2 or more at high magnetic latitude. The variance at equatorial latitude is much smaller. The sources of these fluctuations and the latitude gradient remain unknown. Variations of all origins completely obscure any long-term climatic trend in the data taken in the previous four decades at both mid and high latitude.  相似文献   

4.
利用DMSP F13卫星1996-2005年共10年的观测数据,研究地磁中低纬地区黄昏时段(18:00 LT)顶部电离层总离子密度经度变化的季节、地磁纬度和太阳活动变化特征.结果表明总的经度变化在低纬地区与中纬地区具有明显不同特征.不同经度结构的季节变化均以年变化为主,但纬度分布具有明显差异.一波结构主要集中在中纬地区,且南半球明显强于北半球;二波结构南北半球不对称性非常明显;三波结构和四波结构均为低纬地区明显强于中纬地区.通过分析不同波结构对总经度变化的贡献发现,一波结构在南半球中纬地区贡献最大,二波结构在12月前后的15°N附近贡献较大,三波结构和四波结构仅在低纬地区有较强贡献.在不同太阳活动条件下,不同波结构的贡献率有明显变化.   相似文献   

5.
The ionosphere of Venus is primarily formed by photoionization of a gaseous blanket around Venus. The impact ionization by energetic solar charged particles also plays an important role in the variability of Venusian ionospheric ion, electron density and their temperature profiles. The microscopic variations in the solar wind velocity, particle flux and orientations of frozen-in interplanetary magnetic field determine the solar wind interaction with the Venusian ionosphere. The ion and electron density profiles obtained by Pioneer Venus Orbiter and Pioneer Venus Entry Probes have been analysed in the light of simultaneous solar wind velocity and particle flux. Marked changes in height profiles of ion, electron densities and their temperatures have been found to correlate with the simultaneous changes in the solar wind velocity and particle flux. It is shown that the solar wind plays a more important role in controlling the physical properties and behavior of daytime as well as nighttime ionosphere of Venus, whereas the solar xuv sustains the primary ionization process.  相似文献   

6.
In-situ measurements of ion and neutral composition and temperature across the dayside of Venus during 1979–1980 exhibit long and short-term changes attributed to solar variations. Following solar maximum, dayside concentrations of CO+ and the neutral gas temperature are relatively smoothly modulated with a 28-day cycle reasonably matching that of the solar F10.7 and EUV fluxes. Measurements some 6–8 months earlier show less pronounced and more irregular modulation, and short-term day-to-day fluctuations in the ions and neutrals are relatively more conspicuous than in the later period. During the earlier period, the solar wind at Venu exhibits relatively large velocity enhancements, which appear to be consistent with differences in solar coronal behavior during the two periods. It is suggested that through the solar wind variations and associated changes in the draping of the interplanetary magnetic field about the dayside, fluctuating patterns of joule heating may occur, producing the observed short term ion and neutral variations. This indirect energy effect, if verified, presents a complication for quantitatively analyzing the modulation in neutral temperature and ion concentration produced by changes in direct EUV radiation.  相似文献   

7.
To study the variation of ionospheric electron and ion temperatures with solar activity the data of electron and ion temperatures were recorded with the help of Retarding Potential Analyzer payload aboard Indian SROSS-C2 satellite at an average altitude of ∼500 km. The main focuses of the paper is to see the diurnal, seasonal and latitudinal variations of electron and ion temperatures during periods of minimum to maximum solar activity. The ionospheric temperatures in the topside show strong variations with altitude, latitude, season and solar activity. In present study, the temperature variations with latitude, season and solar activity have been studied at an average altitude ∼500 km. The peak at sunrise has been observed during all seasons, in both electron and ion temperatures. Further, the ionospheric temperatures vary with latitude in day time. The latitudinal variation is more pronounced for low solar activity than for high solar activity.  相似文献   

8.
Results of a statistical variation of total ion density observed in the vicinity of epicenters as well as around magnetically conjugated points of earthquakes are presented in this paper. Two data sets are used: the ion density measured by DEMETER during about 6.5?years and the list of strong earthquakes (MW?≥?4.8) occurring globally during this period (14,764 earthquakes in total). First of all, ionospheric perturbations with 23–120?s observation time corresponding to spatial scales of 160–840?km are automatically detected by a software (64,287 anomalies in total). Second, it is checked if a perturbation could be associated either with the epicenter of an earthquake or with its magnetically conjugated point (distance?<?1500?km and time?<?15?days before the earthquake). The index Kp?<?3 is also considered in order to reduce the effect of the geomagnetic activity on the ionosphere during this period. The results show that it is possible to detect variations of the ionospheric parameters above the epicenter areas as well as above their conjugated points. About one third of the earthquakes are detected with ionospheric influence on both sides of the Earth. There is a trend showing that the perturbation length increases as the magnitude of the detected EQs but it is more obvious for large magnitude. The probability that a perturbation appears is higher on the day of the earthquake and then gradually decreases when the time before the earthquake increases. The spatial distribution of perturbations shows that the probability of perturbations appearing southeast of the epicenter before an earthquake is a little bit higher and that there is an obvious trend because perturbations appear west of the conjugated point of an earthquake.  相似文献   

9.
The experimentally measured ground level atmospheric electrical conductivity is validated from a simplified ion–aerosol model for which the inputs are ionization rate from surface radioactivity, aerosol density and meteorological parameters. Also estimated from the model is the reduction in conductivity for assumed aerosol levels. It is seen that for an increase of ambient aerosols by threefold the percent reduction in conductivity is 7% and it is 10% for an increase by sixfold. Thus, the variations in the measured ground level conductivity can be used to examine the atmospheric pollution, if any.  相似文献   

10.
Variations of stratospheric temperature are connected with changes of the solar wind dynamic pressure. This effect could be explained in the framework of the global electric circuit concept. The energy of the solar wind modulates the energy balance of the global electric circuit where the stratosphere could be one of its other elements. The conductivity of the stratosphere in the polar region is equal to and sometimes more than the conductivity of the ground surface covered by ice or permafrost. Re-distribution of the global electric circuit currents between the stratosphere and the ground surface determines a different relation between solar wind dynamics and variations of the stratospheric temperature during different seasons.  相似文献   

11.
本文以极区双雷达STARE系统观测到的高纬E区电场(65°—70°范围内)之形态为基础,用简单模式法对其中部分有趣现象进行了讨论。静日(1≤Kp≤3)形态与Vasyliunas模式符合较好。其晨一昏不对称性可部分地由电导率日一夜不均匀性解释,同时也说明在磁层中亦应有晨-昏不对称因素。本文还提出了两个简单模式,以讨论扰日对流圈的西向旋转。其一讨论了场向电流一、二区的相对强度产生之效果;其二考虑了Hall和Pederson电导率之比的作用,并对此两模式进行了比较。为了进一步搞清这个问题,需对磁层过程有更多的了解,也需要对电场和场向电流进行同时性的观测。   相似文献   

12.
We analyzed data from four different instruments (HI-SCALE, URAP, SWOOPS, VHM/FGM) onboard Ulysses spacecraft (s/c) and we searched for possible evidence of Jovian emissions when the s/c approached Jupiter during the times of Halloween events (closest time approach/position to Jupiter: February 5, 2004/R = 1683 RJ,θ = ∼49°). In particular, we analyzed extensively the low energy ion measurements obtained by the HI-SCALE experiment in order to examine whether low energy ion/electron emissions show a symmetry, and whether they are observed at north high latitudes upstream from the jovian bow shock, as is known to occur in the region upstream from the south bow shock as well ( Marhavilas et al., 2001). We studied the period from October 2003 to March 2004, as Ulysses moved at distances 0.8–1.2 AU from the planet at north Jovicentric latitudes <75°, and we present here an example of characteristic Jovian periodicities in the measurements around a CIR observed by Ulysses on days ∼348–349/2003 (R = 1894 RJ,θ = 72°). We show that Ulysses observed low energy ion (∼0.055–4.7 MeV) and electron (>∼40 keV) flux and/or spectral modulation with the Jupiter rotation period (∼10 h) as well as variations with the same period in solar wind parameters, radio and magnetic field directional data. In addition, characteristic strong ∼40 min periodic variations were found superimposed on the ∼10 h ion spectral modulation. Both the ∼10 h and ∼40 min ion periodicities in HI-SCALE measurements were present in several cases during the whole period examined (October 2003 to March 2004) and were found to be more evident during some special conditions, for instance during enhanced fluxes around the start (forward shock) and the end (reverse shock) of CIRs. We infer that the Jovian magnetosphere was triggered by the impact of the CIRs, after the Halloween events, and it was (a) a principal source of forward and reverse shock-associated ion flux structures and (b) the cause of generation of ∼10 h quasi-periodic magnetic field and plasma modulation observed by Ulysses at those times.  相似文献   

13.
The first campaign of the Polar Patrol Balloon (PPB) experiment (1st-PPB) was carried out at Syowa Station in Antarctica during 1990–1991 and 1992–1993. Based on the results of the 1st-PPB experiment, the next campaign (2nd-PPB) was carried out in the austral summer of 2002–2003. This paper will present stratospheric conductivity results from the 2nd-PPB experiment. In that experiment, three balloons were launched for the purpose of upper atmosphere physics observation (three balloons). Payloads of these three flights were identical with each other, and were launched as close together in time as allowed by weather conditions to constitute a cluster of balloons during their flights. Such a “Balloon Cluster” is suitable to observe temporal evolution and spatial distribution of phenomena in the ionospheric regions and boundaries that the balloons traversed during their circumpolar trajectory. More than 20 days of simultaneous fair weather 3-axis electric field and stratospheric conductivity data were obtained at geomagnetic latitudes ranging from sub-auroral to the polar cap. Balloon separation varied from ∼60 to >1000 km. This paper will present stratospheric conductivity observations with emphasis on the temporal and spatial variations that were observed.  相似文献   

14.
Scale height, H, estimates are calculated from the decrease/increase of ionospheric virtual reflection heights of low-frequency (LF) radio waves at oblique incidence in suitably defined morning intervals around sunrise during winter months. The day-to-day variations of H qualitatively agree with daily mean temperature variations around 90 km from meteor radar measurements. Since mesospheric long-period temperature variations are generally accepted to be the signature of atmospheric planetary waves, this shows that LF reflection height measurements can be used for monitoring the dynamics of the upper middle atmosphere. The long-term variations of monthly mean H estimates have also been analysed. There is no significant trend, which is in agreement with other measurements of mesopause region temperature trends.  相似文献   

15.
The data presented in this work describes the diurnal and seasonal variation in hmF2, NmF2, and the electrojet current strength over an African equatorial station during a period of low solar activity. The F2 region horizontal magnetic element H revealed that the Solar quiet Sq(H) daily variation rises from early morning period to maximum around local noon and falls to lower values towards evening. The F2 ionospheric current responsible for the magnetic field variations is inferred to build up at the early morning hours, attaining maximum strength around 1200 LT. The Sq variation across the entire months was higher during the daytime than nighttime. This is ascribed to the variability of the ionospheric parameters like conductivity and winds structure in this region. Seasonal daytime electrojet (EEJ) current strength for June solstice, March and September equinoxes, respectively had peak values ranging within 27–35 nT (at 1400 LT) , 30–40 nT (at 1200 LT) and 35–45 nT (at 1500 LT). The different peak periods of the EEJ strength were attributed to the combined effects of the peak electron density and electric field. Lastly, the EEJ strength was observed to be higher during the equinoxes than the solstice period.  相似文献   

16.
利用NCAR-TIEGCM计算了第23太阳活动周期间(1996—2008年)400km高度上的大气密度,并统计分析大气密度对太阳辐射指数FF10.7的响应.结果表明,在第23太阳活动周内,大气密度的变化趋势与太阳辐射指数FF10.7的变化趋势基本一致,但是大气密度在不同年份、不同月份对太阳辐射指数FF10.7的响应存在差异.第23太阳活动周内太阳辐射极大值和极小值之比大于4,而大气密度的极大值与极小值之比则大于10.太阳辐射低年的年内大气密度变化不到2倍,而太阳辐射高年的年内大气密度变化可达2倍甚至3倍.大气密度与FF10.7指数在北半球高纬的相关系数比南半球高纬的相关系数大.在低纬地区,太阳辐射高年大气密度与FF10.7指数的相关系数比低年的大.不同纬度上,大气密度与太阳辐射指数FF10.7的27天变化值之间的相关系数都大于其与81天变化值之间的相关系数.   相似文献   

17.
Double cusps have been observed on a few occasions by polar orbiting spacecraft and ground-based observatories. The four Cluster spacecraft observed two distinct regions, showing characteristics of a double cusp, during a mid-altitude cusp pass on 7 August 2004. The Wind spacecraft detected a southward turning of the Interplanetary Magnetic Field (IMF) at the beginning of the cusp crossings and IMF–Bz stayed negative throughout. Cluster 4 observed a high energy step in the ion precipitation around 1 keV on the equatorward side of the cusp and a dense ion population in the cusp centre. Cluster 1, entering the cusp around 1 min later, observed only a partial ion dispersion with a low energy cutoff reaching 100 eV, together with the dense ion population in the cusp centre. About 9 min later, Cluster 3 entered the cusp and observed full ion dispersion from a few keV down to around 50 eV, together with the dense ion population in the centre of the cusp. The ion flow was directed poleward and eastward in the step/dispersion, whereas in the centre of the cusp the flow was directed poleward and westward. In addition the altitude of the source region of ion injection in the step/dispersion was found 50% larger than in the cusp centre. This event could be explained by the onset of dayside reconnection when the IMF turned southward. The step would be the first signature of component reconnection near the subsolar point, and the injection in the centre of the cusp a result of anti-parallel reconnection in the northern dusk side of the cusp. A three-dimensional magnetohydrodynamic (MHD) simulation is used to display the topology of the magnetic field and locate the sources of the ions during the event.  相似文献   

18.
给出海尔-波普彗星近日点附近大尺度观测的结果.指出:1997年2月16、17和18日海尔-波普彗星等离子尾部分有断尾事件发生.观测时刻的离子尾内物质运动速度约为50km/s;离子尾射线向主尾主轴的并拢速度约为0.080'/s.1997年3月3日海尔-波普彗星离子尾有波动现象发生.波动发生在距离彗星密度中心约130×104km,偏离主轴30°处,振幅约20×104km、其离子束宽度约8×104km、波动的相速度约为200km/s.   相似文献   

19.
本文利用NIMBUS-7SAMS温度资料,分析研究了1979年至1982年期间发生的3.5级以上大耀斑事件对中层大气温度的影响。并对其物理过程进行了分析和讨论。主要结论是:在太阳大耀斑爆发前后的一两天内,在20°N-60°N地区的中间层大气上部,大气温度有明显降低,中间层下部则有明显增加。对平流层顶高度以下的大气温度没有明显影响。   相似文献   

20.
极区顶部电离层离子上行的太阳活动依赖性研究   总被引:2,自引:2,他引:0       下载免费PDF全文
利用第23太阳活动周DMSP F12,F13和F15卫星数据,分别对南北半球极区顶部电离层离子上行的太阳活动依赖性进行了研究.结果表明,南北半球上行事件对太阳活动的响应特征基本一致,即高(低)太阳活动时,离子上行通量以及上行数密度较大(小),但是上行速度及上行发生率较低(高).以南半球高纬为例,计算得到离子上行通量、数密度、速度及发生率在高低太阳活动条件下的比值分别约为2.26,3.35,0.71,0.51.对离子上行太阳活动依赖性的可能原因进行了分析.不同太阳活动水平下,光致电离及高能粒子沉降的差异会导致电离层离子密度的不同,而电离层离子密度的变化会改变离子elax-elax中性大气之间的碰撞频率,这是影响离子上行发生率的一个重要原因.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号