首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optical measurements made from the Space Shuttle include several sources of emission, each modified according to viewing configuration, Shuttle altitude, solar activity, local time, and latitude. These sources include the atmospheric emissions and emissions of non-terrestrial origin (such as stellar, interstellar, and interplanetary), together with any contamination emission induced by the Shuttle itself. In order to make astronomical observations from the Shuttle, the observer needs good information on the intensities and spectral characteristics of these various sources. In this paper we present a model spectrum for one of these components, the natural airglow background. The spectrum is modeled over a wavelength range extending from the extreme ultraviolet to the near infrared. This model is based on our present knowledge of the upper atmosphere. The effect of different viewing configurations is illustrated, together with day to night variations. The results synthesized here assume an ideal vehicle in the sense that no contaminant emissions are induced by the Shuttle and payload. These spectra therefore represent a baseline which can be used to locate unanticipated or non-ambient features.  相似文献   

2.
3.
基于多光谱测温优化的材料光谱发射率测量   总被引:1,自引:0,他引:1  
针对高温材料红外光谱发射率测量中样品表面温度难以准确测量的问题,提出了直接使用光谱仪测量得出样品表面的光谱辐射能量信息,选取其中合适的光谱波段利用多光谱测温方法得到样品表面温度,进而计算出材料的光谱发射率.分析了多光谱测温中发射率模型的阶次和测量波段选取对测温准确度的影响,给出了温度计算的稳健算法,并对其主要不确定度的来源进行了评定.在1 100 K左右温度下以不锈钢材料进行实验验证,得出温度引起的光谱发射率相对不确定度在2~20 μm范围内低于2%,满足红外隐身和辐射测温等领域的要求,适合于导热性能差的材料或涂层材料的高温光谱发射率测量.  相似文献   

4.
低温环境下红外场景生成装置的标定是对低温红外目标特征评估和精准探测的前提。通过标定过程中热辐射-光子-电子转换测量的传递途径,建立基于红外热像仪灰度的低温标定模型,用最小二乘法进行拟合,得到模型中的辐射出射度响应函数和系统固有偏置。搭建了低温标定实验装置,根据热像仪对低温辐射源不同辐射出射度的测量结果,得到标定方程。分析了理论值和实际测量值的误差,在低温黑体辐射出射度9.79W/m2处,热像仪的辐射出射度误差最大,为-0.17W/m2,此时的灰度误差为-9.91DN。  相似文献   

5.
Recent laboratory experiments, compared with observations, have strongly suggested that the amount of hydrogen, present in the grain formation regions, around C-rich stars, can play a major role in the definition of the spectral characteristics of the freshly formed carbon dust particles. Such spectral characteristics could also be modified, during the thermal processing, due to the shock waves and/or the strong radiation field, that the grains undergo after their formation. In this work we report about a series of laboratory tests, during which submicronic dust particles of amorphous carbon, condensed in an hydrogen-rich atmosphere, have been processed, by means of two different methods. Some samples have been annealed into an oven at different temperatures, while others have been exposed to strong ultraviolet radiation. Their spectra have been obtained before and after the processing in the full range from ultraviolet (200 nm) to far infrared (0.1 mm). The results of the experiment are presented and discussed, together with their astrophysical implications.  相似文献   

6.
Contemporary gamma-ray spectroscopy instruments and their results are reviewed. Sensitivities of 10?4 to 10?3 ph/cm2-sec have been achieved for steady sources and 10?2 to 1 ph/cm2-sec for transient sources. This has led to the detection of gamma-ray lines from more than 40 objects representing 6 classes of astrophysical phenomena. The lines carry model-independent information and are of fundamental importance to theoretical modeling and our understanding of the objects. These results indicate that gamma-ray spectroscopy is relevant to a wide range of astrophysical problems and is becoming a major part of astronomy. The objectives and anticipated results of future instruments are discussed. Several instruments in development will have a factor of ~ 10 sensitivity improvement to certain phenomena over contemporary instruments. A factor of ~ 100 improvement in sensitivity will allow the full potential of gamma-ray spectroscopy to be realized. Instrument concepts which would achieve this with both present and advanced techniques are discussed.  相似文献   

7.
The Hubble Space Telescope offers enormous advantages to infrared astronomy in certain situations. The advantages of being above the atmosphere include an increase in spatial resolution, a much wider range of wavelengths available, and lower background radiation. Compared to proposed cooled telescopes, HST offers higher spatial resolution and increased collecting area. HST is particularly well suited to observations at wavelengths less than ~5 μm, where the diffraction limit is less than the seeing limit from the ground and thermal emission does not seriously compromise the sensitivity of the detectors. HST is also favorable for observations requiring high spectral resolution at all wavelengths not accessible from the ground.  相似文献   

8.
The geomagnetically-trapped and galactic cosmic radiation environments are two of the major sources of naturally-occurring space radiation exposure to astronauts in low earth orbit. The exposure is dependent primarily on altitude, spacecraft shielding, crew stay-times, and solar cycle effects for a 28.5 deg orbital inclination. Based on Space Shuttle experience, the calculated results of a parametric study are presented for several mission scenarios using a computerized anatomical man model and are compared with the NASA crew exposure limits for several critical body organs.  相似文献   

9.
A wide variety of new X-ray instrumentation is being proposed to attack an even wider variety of astrophysical problems. It includes general-purpose instruments which, with further development and testing, may someday be part of the complement of an orbiting “observatory” facility, such as AXAF. Other instruments promise significant and often necessary advantages for a narrower range of problems. The testing and development of all of these ideas, and in particular finding an efficient way to employ the latter class to make the observations for which they are intended, pose dilemmas for which the Space Shuttle potentially offers solutions. A discussion of possible modes for using the Shuttle and a brief sampling of new instrumentation ideas are presented.  相似文献   

10.
The Extreme Ultraviolet Explorer (EUVE) mission is described with emphasis on the overall capabilities of the instrumentation and the relevance of the mission to determining parameters of the local interstellar medium. The primary purpose of the mission is to search the celestial sphere for astronomical sources of extreme ultraviolet (EUV) radiation (100–1000Å). The search will be accomplished with the use of three EUV telescopes, sensitive to different segments of the EUV band. A fourth telescope will perform a high sensitivity search of a limited sample of the sky in the shortest wavelength bands. The all-sky survey will be carried out in the first six months of the mission. The second six months of the mission, conducted entirely by Guest Investigators selected by NASA, will be devoted to spectroscopic observations of selected EUV sources. The instrumentation is now well developed. The mirrors meet the requirements of the mission with the best mirror having a full-width half energy spread of 8 arc seconds and a surface finish of 20Å. Prototype thin film bandpass filters have been flown on the Space Shuttle and their performance optimized. Prototype detectors have been developed which have 600 by 600 pixel imaging capability and up to 80% quantum efficiency in parts of the EUV band. A newly invented, high efficiency, grazing incidence spectrometer using variable line space gratings is under development; prototype gratings have been fabricated which provide 75% of theoretical efficiency. An end-to-end (star to as-received flight data) model of the mission has been constructed. Hypothetical, but realistic, flux data from continuous astronomical sources absorbed by intervening material have been processed through this model and show the ability of the EUVE instrumentation to measure such parameters as the hydrogen to helium ratio of the local interstellar medium.  相似文献   

11.
12.
Astrosat will be the first full-fledged Indian Astronomy mission aimed at multiwavelength studies in the optical, near- and far-UV and a broad X-ray spectral band covering 0.5–100 keV. This mission will have the capability of high time-resolution X-ray studies (10 μs timing), low and medium energy-resolution spectral studies and high angular-resolution (about 2″) imaging observations in the UV and optical bands simultaneously. This is realized by using a set of three co-aligned X-ray astronomy instruments and one UV imaging telescope consisting of two similar instruments. Detection and timing studies of X-ray transients and persisting sources will be done by a Scanning Sky X-ray Monitor. This mission will enable studies of different classes of galactic and extragalactic sources in the frontier area of high energy astronomy. Scientific objectives of the mission are highlighted in this paper. A brief summary of the design and characteristics of the X-ray and UV instruments and their expected sensitivities are presented.  相似文献   

13.
Since STS-26, three large solar events have occurred during Shuttle missions; a geomagnetic storm during STS-29 and solar particle events (SPEs) during STS-28 and -34. The maximum dose to a crew attributed to an SPE was estimated to be 30 microGy (70 microSv). Time-resolved dosimetry measurements of the SPE dose during STS-28 were made using the Air Force Radiation Monitoring Equipment (RME)-III. Comparison of calculated and measured dose demonstrated a discrepancy, possibly a result of deficiencies in the geomagnetic cutoff model used. This experience demonstrates that dose from an SPE is strongly dependent on numerous factors such as orbit inclination, SPE start time, spectral parameters and geomagnetic field conditions; the exact combination of these factors is fortuitous. New sources of data and procedures are being investigated, including real-time tracking of auroral oval positions or determination of particle cutoff latitudes, for incorporation into operational Shuttle radiation support practices.  相似文献   

14.
Studies to characterize optical and biological properties of land cover as observed from space are planned using a six channel, imaging spectroradiometer employing newly developed multispectral linear array (MLA) detector technology. These studies are to take place by mounting the radiometer on the Shuttle and observing areas with dynamic and diverse types of land cover condition. The radiometer will have 15 meter spatial resolution for four, 20 nanometer bands in the visible and near infrared and 30 meter resolution for similarily narrow bands in the shortwave infrared bands. The instrument will scan ± 45 degrees along the Shuttle orbital path. The principle objective of this experiment is to obtain observations that augment knowledge of the distribution of basic land cover types in regions that are known to be key to questions of biogeochemical cycles, energy balance and climatic change. Another key objective is to quantify the bidirectional reflectance of key land cover conditions in major portions of the visible, near infrared and shortwave infrared as they are observed from space. The initial execution of this experiment is presently scheduled for late 1987.  相似文献   

15.
The Shuttle Activation Monitor (SAM) experiment was flown on the Space Shuttle Columbia (STS-28) from 8-13 August, 1989 in a 57 degrees, 300 km orbit. One objective of the SAM experiment was to determine the relative effect of different amounts of shielding on the gamma-ray backgrounds measured with similarly configured sodium iodide (NaI) and bismuth germante (BGO) detectors. To achieve this objective twenty-four hours of data were taken with each detector in the middeck of the Shuttle on the ceiling of the airlock (a high-shielding location) as well as on the sleep station wall (a low-shielding location). For the cosmic-ray induced background the results indicate an increased overall count rate in the 0.2 to 10 MeV energy range at the more highly shielded location, while in regions of trapped radiation the low shielding configuration gives higher rates at the low energy end of the spectrum.  相似文献   

16.
We propose that axion-like particles (ALPs) with a two-photon vertex, consistent with all astrophysical and laboratory bounds, may lead to effects in the spectra of high-energy gamma-ray sources detectable by satellite or ground-based telescopes. We discuss two kinds of signatures: (i) a peculiar spectral depletion due to gamma rays being converted into ALPs in the magnetic fields of efficient astrophysical accelerators according to the “Hillas criterion”, such as jets of active galactic nuclei or hot spots of radio galaxies; (ii) an appearance of otherwise invisible sources in the GeV or TeV sky due to back-conversion of an ALP flux (associated with gamma-ray emitters suffering some attenuation) in the magnetic field of the Milky Way. These two mechanisms might also provide an exotic way to avoid the exponential cutoff of very high energy gamma-rays expected due to the pair production onto the extragalactic background light.  相似文献   

17.
SMESE (SMall Explorer For the study of Solar Eruptions) is a Franco-Chinese Microsatellite mission. The scientific objectives of SMESE are the study of coronal mass ejections and flares. Its payload consists of three instrument packages: LYOT, DESIR and HEBS. LYOT is com-posed of a Ly-α (121.6 nm) coronagraph, a Ly-α disk imager and a far UV disk imager. DESIR is an infrared telescope working at 35μm and 150μm. HEBS is a high energy burst spectrometer working in X-rays and γ-rays covering the 10keV to 600 MeV range. SMESE will be launched around 2011, providing a unique opportunity of detecting and understanding eruptions at the maximum activity phase of the solar cycle in a wide range of energies.  相似文献   

18.
Extremely detailed computerized anatomical male (CAM) and female (CAF) models that have been developed for use in space radiation analyses are discussed and reviewed. Recognizing that the level of detail may currently be inadequate for certain radiological applications, one of the purposes of this paper is to elicit specific model improvements or requirements from the scientific user-community. Methods and rationale are presented which describe the approach used in the Space Shuttle program to extrapolate dosimetry measurements (skin doses) to realistic astronaut body organ doses. Several mission scenarios are presented which demonstrate the utility of the anatomical models for obtaining specific body organ exposure estimates and can be used for establishing cancer morbidity and mortality risk assessments. These exposure estimates are based on the trapped Van Allen belt and galactic cosmic radiation environment models and data from the major historical solar particle events.  相似文献   

19.
The First Spacelab Flight - scheduled for September 1983 - will carry a multidisciplinary payload intended to demonstrate that valuable scientific results can be achieved with such short duration missions. The payload complement includes a spectrometer to undertake observations of the brighter cosmic X-ray sources. The primary scientific objectives of this experiment are the study of detailed spectral features in cosmic X-ray sources and their associated temporal variations over a wide energy range from about 2 keV up to 80 keV. The instrument based on the gas scintillation proportional counter, will have an effective area of some 180 cm2 with an energy resolution of ~ 9% FWHM at 7 keV. The key performance parameters of the instrument, which include calibration results and the sensitivity of the planned observations, are discussed.  相似文献   

20.
Near-infrared diffuse radiation at 1 μm – 5 μm was observed using cold optics on board a sounding rocket. The observed surface brightness is too bright to be explained by known diffuse sources and its significant part is possibly attributed to the cosmic origin. Extragalactic background radiation thus obtained is brighter than theoretically estimated so that new energy sources at an early epoch of the universe are required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号