首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The nature of ionospheric losses from Venus is of essential importance for understanding the ionosphere dynamics of this unmagnetized planet. A plausible mechanism that can explain the escape of charged particles involves the solar wind interaction with the upper atmospheric layers of Venus. The hydrodynamic approach proposed for plasma expansion in the present study comprises two populations of positive ions and the neutralizing electrons, which interact with the solar wind electrons and protons. The fluid equations describing the plasma are solved numerically using a self-similar approach. The behavior of plasma density, velocity, and electric potential, as well as their reliance upon solar wind parameters have been examined. It is found that for noon midnight sites, the oxygen ion-to-electron relative density may be the main factor to enhance the ionic loss. However, the other parameters, like hydrogen density and solar wind density and velocity seem to do not stimulate the runaway ions. For lower dawn-dusk region, the plasma are composed of hydrogen and oxygen ions as well as electrons, but for higher altitudes only hydrogen ions and electrons are encountered. All ionic densities play an important role either to reduce or boost the ionic loss. The streaming solar wind velocity has no effect on the plasma escaping for lower altitudes, but it reduces the expansion at higher altitudes.  相似文献   

2.
A model for stochastic acceleration of electrons during geomagnetic storms   总被引:1,自引:0,他引:1  
The theory of resonant diffusion is extended to fully relativistic plasmas, and we examine resonant interactions between electrons and electromagnetic R mode (whistler) and L-mode (EMIC) waves. Resonant diffusion curves are constructed for plasma parameters representative of the Earth's storm time magnetosphere, both inside and outside the plasmapause. EMIC waves can resonate with electrons > 1 MeV, but the energies remain nearly constant along the diffusion curves. Storm-time EMIC waves can induce rapid pitch—angle scattering, but the waves are ineffective for stochastic acceleration of elections. Substantial energy change can occur along the diffusion curves for interactions between resonant electrons and whistler—mode waves, especially in regions of low plasma density. Specifically, whistlers can accelerate electrons from energies near 100 keV to above 1 MeV outside the plasmapause. A model is proposed comprising energy diffusion by whistler-mode chorus and pitch-angle scattering by EMIC waves to account for the gradual acceleration of electrons over the region 4 ≤ L ≤ 6 during the recovery phase of a geomagnetic storm.  相似文献   

3.
We show examples of long period Pc5 magnetic field pulsations near field-aligned current (FAC) regions in the high-latitude magnetosphere, observed by INTERBALL-Au, and coordinated with POLAR, GOES-9 and ground-based observations during 11 January and 11 April 1997. Identification of corresponding magnetosphere regions and subregions is provided by electrons and protons in the energy-range of 0.01–100 keV measured onboard the spacecraft. The ULF Pc5 wave occurrence is observed in both upward and downward FACs. A fairly good correlation is demonstrated between these ULF Pc5 waves and the consecutive injection of magnetosheath low energy protons. The constancy of the observed frequency peak at 1.8 mHz during quite unsteady solar wind pressure conditions could be reconciled with the surface wave mode model. The 3.1 mHz peak location area probably resembles field-line fluctuations with an interesting appearance of poloidal mode oscillation. It is suggested that the 1.3 mHz wave and its harmonic 2.6 mHz represent global compressional oscillations.  相似文献   

4.
Broadband electrostatic noise (BEN) is commonly observed in different regions of the Earth’s magnetosphere, eg., auroral region, plasma sheet boundary layer, etc. The frequency of these BENs lies in the range from lower hybrid to the local electron plasma frequency and sometimes even higher. Spacecraft observations suggest that the high and low-frequency parts of BEN appear to be two different wave modes. There is a well established theory for the high-frequency part which can be explained by electrostatic solitary waves, however, low-frequency part is yet to be fully understood. The linear theory of low-frequency waves is developed in a four-component magnetized plasma consisting of three types of electrons, namely cold background electron, warm electrons, warm electron beam and ions. The electrostatic dispersion relation is solved, both analytically and numerically. For the parameters relevant to the auroral region, our analysis predict excitation of electron acoustic waves in the frequency range of 17 Hz to 2.6 kHz with transverse wavelengths in range of (1–70) km. The results from this model may be applied to explain some features of the low-frequency part of the broadband electrostatic noise observed in other regions of the magnetosphere.  相似文献   

5.
The ionization of the gas ejections from the Io satellite into the Jovian magnetosphere by the corotating magnetospheric plasma flow is considered. It is shown that the plasma flow velocity at the Io orbit exceeds the critical velocity at which the anomalous electron ionization of the heavy gas components takes place due to collisionless energy transfer from ionized gas atoms to plasma electrons. The energy, number density and spatial distribution of suprathermal electrons is calculated using the quasilinear theory of newly ionized atoms instability in a moving plasma. Saturation of the plasma density build up in a plasma is considered in terms of the instability quenching by Coulomb collisions.  相似文献   

6.
The aim of this paper is to investigate processes in the magnetosphere and in particular the problems of the interaction of the solar wind with the Earth's magnetic field to produce large-scale convection, electric fields and longitudinal currents in the magnetosphere. The investigation is carried out in the frame of magnetic hydrodynamics. The reason for such an approach can be found in /1/. When calculating the transfer coefficients, the Böhm approximation is used, i.e. it is considered that the plasma in the near-equatorial part of the magnetosphere (quasiplanar geometry is used in the problem for simplification) is sufficiently turbulent that the condition ωτ ≈ 1 is valid (ω is the Larmor frequency of electrons, τ is effective time between two Quasi-collisions). The main subjects of investigation in this paper are the input near the equatorial boundary layer and the plasma layer of the magnetosphere tail.  相似文献   

7.
8.
Foreshock is a special region located upstream of the Earth’s bow shock characterized by the presence of various plasma waves and fluctuations caused by the interaction of the solar wind plasma with particles reflected from the bow shock or escaping from the magnetosphere. On the other hand, foreshock fluctuations may modify the bow shock structure and, being carried through the magnetosheath, influence the magnetopause. During the years 1995–2000, the INTERBALL-1 satellite made over 10,000 hours of plasma and energetic particles measurements in the solar wind upstream of the Earth’s bow shock. We have sorted intervals according to the level of solar wind ion flux fluctuations and/or according to the flux of back-streaming energetic protons. An analysis of connection between a level of ion flux fluctuations and fluxes of high-energy protons and their relation to the IMF orientation is presented.  相似文献   

9.
Data from ARCS rocket ion beam injection experiments will be primarily discussed in this paper. There are three results from this series of active experiments that are of particular interest in space plasma physics. These are the transverse acceleration of ambient ions in the large beam volume, the scattering of beam ions near the release payload, and the possible acceleration of electrons very close to the plasma generator which produce intense high frequency waves. The ability of 100 ma ion beam injections into the upper E and F regions of the ionosphere to produce these phenomena appear to be related solely to the process by which the plasma release payload and the ion beam are neutralized. Since the electrons in the plasma release do not convect with the plasma ions, the neutralization of both the payload and beam must be accomplished by large field-aligned currents (milliamperes/square meter) which are very unstable to wave growth of various modes. Future work will concentrate on the wave production and wave-particle interactions that produce the plasma/energetic particle effects discussed in this paper and which have direct application to natural phenomena in the upper ionosphere and magnetosphere.  相似文献   

10.
We present the analysis of data taken by the Space Application of Timepix Radiation Monitor (SATRAM). It is centred on a Timepix detector (300?μm thick silicon sensor, pixel pitch 55?μm, 256?×?256 pixels). It was flown on Proba-V, an Earth observing satellite of the European Space Agency (ESA) from an altitude of 820?km on a sun-synchronous orbit, launched on May 7, 2013. A Monte Carlo simulation was conducted to determine the detector response to electrons (0.5–7?MeV) and protons (10–400?MeV) in an omnidirectional field taking into account the shielding of the detector housing and the satellite. With the help of the simulation, a strategy was developed to separate electrons, protons and ions in the data. The measured dose rate and stopping power distribution are presented as well as SATRAM’s capability to measure some of the stronger events in Earth’s magnetosphere. The stopping power, the cluster height and the shape of the particle tracks in the sensor were used to separate electrons, protons and ions. The results are presented as well. Finally, the pitch angles for a short period of time were extracted from the data and corrected with the angular response determined by the simulation.  相似文献   

11.
Simultaneous observations of in situ plasma properties in the tail of the Earth’s magnetosphere and of ground based instruments, lying on the same geomagnetic field lines, have recently proved to yield significant new results. In most cases magnetosphere ionosphere interactions during the night-time northern hemisphere conditions are studied. Here, observations of energetic electrons in the tail of the Earth’s magnetosphere made by the THEMIS mission satellites are compared with auroral radio wave absorption determined by riometers in the Antarctic for sunlit conditions. Days for which satellites and riometers are connected by the same geomagnetic field line are selected using a geomagnetic field model. The six days analysed show clear associations between fluxes and absorptions in some cases. However, these do not necessarily correspond to conjugacy intervals. Hours of positive associations are 1.65 times those for negative associations, all hours and days considered (1.42–3.6 on five days and 0.58 on the other day). These computations are assumed appropriate since the footprints of the satellites used approximately follow corrected geomagnetic parallels for all six days studied. The use of a finer parameterization of geomagnetic models to determine conjugacy may be needed.  相似文献   

12.
Proton and electron heating of a flaring atmosphere is compared in a kinetic approach for the particles ejected from a non-neutral reconnecting current sheet (RCS) located above the top of reconnected flaring loops in a two-ribbon flare. Two kinds of high-energy particles are considered: particles accelerated by a super-Dreicer electric field and those ejected from the reconnection region as neutral outflows, or separatrix jets. The beam electrons are assumed to deposit their energy in Coulomb collisions and Ohmic heating of the ambient plasma particles by the electric field induced by the precipitating beams. The protons are assumed to deposit their energy in generation of kinetic Alfvén waves (KAWs), which, in turn, dissipate due to Cherenkov resonant scattering on the ambient plasma electrons. The beam electrons are found to provide a fast (within a few tenth of a second) heating of the atmosphere that is well spread in depth from the corona to the lower chromosphere. The protons are shown to precipitate to the lower atmosphere much slower (up to few seconds for beam and up to 10–20 s for slow jets). Slow jet protons provide heating of the two compact regions: the first located at the top of a flaring loop just below the RCS, and the second one appearing at the transition region (TR) and upper chromosphere; fast beam protons deposit their energy in the TR and chromosphere only.  相似文献   

13.
We report a study of the numeric solution to the diffusive transport equation for energetic protons magnetically trapped in the Earth's equatorial magnetosphere. The analysis takes into account the pertinent physical processes in this region, including deceleration of protons by Coulomb collisional interactions with free and bound electrons, the charge exchange process, cosmic ray albedo neutron decay source, and electric and magnetic radial diffusion. These results were obtained using the Finite Element Method with magnetic moment and geomagnetic L-shell as free variables. Steady state boundary conditions were imposed at L=1 as zero distribution function and at L=7 with proton distribution function extracted from ATS 6 satellite observations. The FEM-code yields unidirectional proton flux in the energy range of 0.1–1000 MeV at the equatorial top of the geomagnetic lines, and the results are found to be in satisfactorily agreement with the empirical NASA AP-8 model proton flux within the energy range of 0.5–100 MeV. Below 500 keV, the empirical AP-8 model proton fluxes are several orders of magnitude greater than those computed with the FEM-code at L<3. This discrepancy is difficult to explain by uncertainties of boundary spectrum parameters or transport coefficients.  相似文献   

14.
Impulsive plasma waves (1–9 kHz) with durations less than 100 msec have been found in DE-1 wide-band electric field data (650 Hz – 40 kHz) received at Kashima, Japan. The waves are associated with a strong narrow-band ELF hiss, and were observed at geocentric distances from 3.1 to 4.9 Re (earth's radius) in the low-latitude nightside magnetosphere. Local electron densities and plasmapause locations estimated suggest that the waves were observed outside the nightside plasmapause. The waves are discussed in terms of Landau resonant trapping of magnetospheric electrons by the associated whistler-mode ELF hiss.  相似文献   

15.
The environment surrounding a planet is composed of plasma, ionized gases and a neutral atmosphere that are continuously under the influence of solar effects. The complex dynamical interactions among these media and the generated electric fields create complicated interrelated current systems in the magnetosphere, ionosphere and atmosphere of the planets. Electric fields, currents and the related magnetic disturbances constitute the planetary electrodynamics scenario that will be considered in this tutorial. Beside providing a comprehensive and integrated view of the planetary electrodynamics, this tutorial intends to introduce the necessary theoretical background to understand the physical processes involved and particularly, to discuss some topics in which the authors are currently focussing their interests: Sun–Earth electrodynamical coupling, numerical simulations, plasmaspheric electron content variability, atmospheric electrical discharges, and the effects of intense magnetic storms at the Earth’s surface and in the magnetic anomaly region. New results on these subjects are also presented. A deeper and broader comprehension of this complex scenario involving multidisciplinary investigations will certainly bring several implications in the observational, theoretical, computational and technological developments, with repercussions in biological and medical sciences.  相似文献   

16.
Waves in the Ultra Low Frequency (ULF) band owe their existence to solar wind turbulence and transport momentum and energy from the solar wind to the magnetosphere and farther down. Therefore an index based on ULF wave power could better characterize solar wind–magnetosphere interaction than KP, Dst, AE, etc. indices which described mainly quasi-study state condition of the system. We have shown that the ULF wave index accurately characterize relativistic electron dynamics in the magnetosphere as these waves are closely associated with circulation, diffusion and energization of relativistic electrons in the magnetosphere. High speed solar wind streams also act as a significant driver of activity in the Earth’s magnetosphere co-rotating interaction region and are responsible for geomagnetic activities. In the present paper, we have analyzed various cases related with very weak (quiet) days, weak days, storm days and eclipse events and discussed the utility of the ULF wave index to explain the magnetospheric dynamics and associated properties. We have tried to explain that the ULF wave index can equally be useful as a space weather parameter like the other indices.  相似文献   

17.
The Mariner 10 observations of Mercury's miniature magnetosphere collected during its close encounters in 1974 and 1975 are reviewed. Subsequent data analysis, re-interpretation and theoretical modeling, often influenced by new results obtained regarding the Earth's magnetosphere, have greatly expanded our impressions of the structure and dynamics of this small magnetosphere. Of special interest are the Earth-based telescopic images of this planet's tenuous atmosphere that show great variability on time scales of tens of hours to days. Our understanding of the implied close linkage between the sputtering of neutrals into the atmosphere due to solar wind and magnetospheric ions impacting the regolith and the resultant mass loading of the magnetosphere by heavy planetary ions is quite limited due to the dearth of experimental data. However, the influence of heavy ions of planetary origin (O+, Na+, K+, Ca+ and others as yet undetected) on such basic magnetospheric processes as wave propagation, convection, and reconnection remain to be discovered by future missions. The electrodynamic aspects of the coupling between the solar wind, magnetosphere and planet are also very poorly known due to the limited nature of the measurements returned by Mariner 10 and our lack of experience with a magnetosphere that is rooted in a regolith as opposed to an ionosphere. The review concludes with a brief summary of major unsolved questions concerning this very small, yet potentially complex magnetosphere.  相似文献   

18.
The existence of significant fluxes of antiparticles in the Earth magnetosphere has been predicted on theoretical considerations in this article. These antiparticles (positrons or antiprotons) at several hundred kilometers of altitudes, we believe are not of direct extraterrestrial origin, but are the natural products of nuclear reactions of the high energy primary cosmic rays (CR) and trapped protons (TP) confined in the terrestrial radiation belt, with the constituents of terrestrial atmosphere. Extraterrestrial positrons and antiprotons born in nuclear reactions of the same CR particles passing through only 5-7 g/cm2 of interstellar matter, exhibit lower fluxes compared to the antiprotons born at hundreds of g/cm2 in the atmosphere, which when confined in the magnetic field of the Earth (in any other planet), get accumulated. We present the results of the computations of the antiproton fluxes at 10 MeV to several GeV energies due to CR particle interactions with the matter in the interstellar space, and also with the residual atmosphere at altitudes of approximately 1000 km over the Earth's surface. The estimates show that the magnetospheric antiproton fluxes are greater by two orders of magnitude compared to the extraterrestrial fluxes measured at energies <1-2 GeV.  相似文献   

19.
At 1 AU and outside the Earth’s magnetosphere, the relative abundances to protons for He (He/p), C (C/p) and Fe (Fe/p) nuclei were calculated using the observation data of AMS-01 (for p and He) and HEAO-3 (for C and Fe) above 0.8 GeV/nucleon. In addition, the transmission function (TF) for the GCR propagation inside the magnetosphere was evaluated using the IGRF and T96 (introduced by Tsyganenko and Stern) models to obtain permitted and forbidden trajectories inside the magnetosphere. The TF allowed one to derive the primary He-nuclei fluxes in the same geomagnetic regions of AMS-01 observations. These fluxes were found in good agreement with the observation data. Furthermore inside the magnetosphere in addition to the flux of helium, it allowed one to obtain those of the primary p, C, and Fe nuclei and the relative abundances of He, C and Fe nuclei to protons from the same observation data of AMS-01 and HEAO-3 above ≈0.8 GeV/nucleon. Up to a geomagnetic latitude of ≈45.84°, the relative isotopic abundances were found to depend on the mass number Iisot and, on average, range from a factor ≈2.31 up to ≈3.35 larger than those outside the magnetosphere at 1 AU. Thus, the magnetospheric isotopic/nuclear relative abundances differ from those inside the solar cavity and those in the interstellar space. The usage of the TF approach can allow one to determine the nuclear abundances in the magnetosphere at any geomagnetic latitude and, thus, any orbit, provided that the CR spectra are determined at 1 AU.  相似文献   

20.
A current sheet model with developed medium scale turbulence has been constructed. It is suggested that regular plasma flow in the current sheet is compensated by diffusive flux and plasma mixing, leading to temperature equalization. The analyzed turbulence has the form of electrostatic vortices in which electrons and ions move with the same velocities and hence does not lead to anomalous resistivity and current dissipation. It is possible to determine the plasma pressure dependence on magnetic vector potential and to find the Grad—Shafranov equation solutions. The theory is used to explain the Earth's magnetosphere plasma sheet characteristics. It is taken into account that experimentally observed plasma velocity fluctuations in the Earth's plasma sheet and quiescent prominences are much higher than regular plasma flow velocities. The analysis of turbulent current sheet dynamics after the regular motion weakening allows to construct the prominence formation theory. The decreasing of plasma pressure in the sheet due to diffusion leads to field-aligned plasma flow and plasma tube filling by cold chromospheric plasma by the action of siphon mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号