首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Established in 1971, the National Balloon Facility operated by TIFR in Hyderabad, India, is a unique facility in the country, which provides a complete solution in scientific ballooning. It is also one of its kind in the world since it combines both, the in-house balloon production and a complete flight support for scientific ballooning. With a large team working through out the year to design, fabricate and launch scientific balloons, the Hyderabad Facility is a unique centre of expertise where the balloon design, research and development, the production and launch facilities are located under one roof. Our balloons are manufactured from 100% indigenous components. The mission specific balloon design, high reliability control and support instrumentation, in-house competence in tracking, telemetry, telecommand, data processing, system design and mechanics is its hallmark. In the past few years, we have executed a major programme of upgradation of different components of balloon production, telemetry and telecommand hardware and various support facilities. This paper focuses on our increased capability of balloon production of large sizes up to 780,000 m3 using Antrix film, development of high strength balloon load tapes with the breaking strength of 182 kg, and the recent introduction of S-band telemetry and a commandable timer cut-off unit in the flight hardware. A summary of the various flights conducted in recent years will be presented along with the plans for new facilities.  相似文献   

2.
卫星无线电测控的特点,变化及发展趋势   总被引:1,自引:0,他引:1  
从卫星无线电测控发展进程可知,由于早期卫星是在各国火箭技术的基础上发展起来的,因此早期卫星的测控带有火箭测控的烙印。美国由于电子技术先进,较早发展了适合于卫星特点的测控;前苏联则由于技术和体制机制的原因持较长时间受火箭控的影响;中国实际上亦为如此。该文阐明了卫星测控的特点变化及发展趋势。认为测控系统在射频及视频的综合性是技术发展必然也是由卫星本身的特点所决定。研制部门的体制和业务项目的分工应适应的  相似文献   

3.
The efforts in scientific ballooning in India have always been focussed towards continuous upgrading of capabilities in all aspects of balloon flights - balloon material, balloon fabrication, launch techniques, heavy payload launch, telemetry, telecommand and other ground facilities - to meet the growing demands of the scientific community. A brief account of recent progress in several of these aspects and future plans for further improvements in scientific ballooning capability is presented.  相似文献   

4.
Highly sophisticated balloon-borne scientific payloads have stringent requirement on the telemetry and command system. The development and fabrication of the on-board TT&C package for telemetry, tracking, command, safety and ranging for these experiments is done in-house at the National Balloon Facility (NBF) at Hyderabad. In the last few years, we have made major improvements both in the ground station and the on-board sub-systems, thereby improving the data quality, data handling speed and the general flight control along with aviation safety. The new system has telemetry data rate up to 1 Mbps. A reduction in weight, power and cost of the reengineered on-board integrated package has also lead to the ease of operation during field tests prior to launch and at remote recovery sites. In this paper, we describe the details of the new control package, its flight performance and our plans for portable S-band telemetry and telecommand system to cater to the balloon flights from Antarctic station and long duration balloon flights.  相似文献   

5.
6.
The balloon payload HEXE A) is designed to observe cosmic X-ray sources in the energy range 20–250 keV. Its detectors are ‘Phoswich’ scintillators with a total sensitive area of 2300 cm2 and a cooled Ge solid state detector with an area of 100 cm2 [1]. The instrument was flown successfully in 1980 and 1981 from Palestine, Texas.Here we describe the control of the instrument and guidance of the telescope as well as the method of data retrieval and real time analysis. These tasks are performed by a ground based minicomputer (HP 1000) and onboard microprocessors (M 6800) which are linked together by data and command telemetry.  相似文献   

7.
8.
The Passepartout sounding balloon transportation system for low-mass (<<1200 g) experiments or hardware for validation to an altitude of 35 km is described. We present the general flight configuration, set-up of the flight control system, environmental and position sensors, power system, buoyancy considerations as well as the ground control infrastructure including recovery operations. In the telemetry and command module the integrated airborne computer is able to control the experiment, transmit telemetry and environmental data and allows for a duplex communication to a control centre for tele-commanding. The experiment module is mounted below the telemetry and command module and can either work as a standalone system or be controlled by the airborne computer. This spacing between experiment- and control unit allows for a high flexibility in the experiment design. After a parachute landing, the on-board satellite based recovery subsystems allow for a rapid tracking and recovery of the telemetry and command module and the experiment. We discuss flight data and lessons learned from two representative flights with research payloads.  相似文献   

9.
一种无人驾驶直升机天线跟踪系统的研制   总被引:2,自引:0,他引:2  
保证天线跟踪系统的正确跟踪指向是无人驾驶直升机遥测遥控系统可靠工作的关键技术问题.详细论述了一种无人直升机天线跟踪系统的设计及其实现,并讨论了其跟踪精度、可靠性、跟踪模式,以及针对直升机的特殊问题采取的方案.相对于圆锥扫描跟踪体制的系统,本系统设备简洁、高效、可靠、成本低,同时又能够满足系统的性能要求,适应车载移动地面站安装使用.该系统参加了多次飞行试验,系统工作稳定,并完成设计定型.   相似文献   

10.
An HF telecommand system for the control of long duration balloon flights at any point on the globe is described. The system proposed consists of a network of low-power transmitters operating at the same carrier frequency. The choice of transmitter frequency, power and location are presented. Control of the transmitters may be performed remotely by means of the public switched telephone network; an assessment of the error-rate in the system as a whole is given.  相似文献   

11.
We have observed cosmic-ray electrons from 10 to 1000 GeV by a long duration balloon flight using Polar Patrol Balloon (PPB) in Antarctica. The observation was carried out for 13 days at an altitude of 35 km in January 2004. The detector is an imaging calorimeter composed of scintillating-fiber belts and plastic scintillators inserted between lead plates. The geometrical factor of detector is about 600 cm2sr and the total thickness of lead absorber is 9 radiation lengths. The performance of the detector has been confirmed by the CERN-SPS beam test and also investigated by Monte-Carlo simulations. New telemetry system using a commercial satellite of iridium, power supply by solar batteries, and automatic level control using CPU have successfully been developed and operated during the flight. We have collected 5.7 × 103 events over 100 GeV including nearly 100 candidates of primary electrons.  相似文献   

12.
参照欧空局的软件工程规范,研制了为星上数据管理任务服务的实时多任务操作系统RT86,它的硬件环境是两个互为冷配份的主控单元,通过1553B串行数据总线与多个远置单元联接,完成星上遥测、遥控及星上多项数据库管理任务。文章介绍了其设计要点,做到了系统设计思路简单清晰,程序易于修改维护,可靠性高,它为星上应用软件开发提供了通用设计平台。  相似文献   

13.
Development of a balloon to fly at higher altitudes is one of the most attractive challenges for scientific balloon technologies. After reaching the highest balloon altitude of 53.0 km using the 3.4 μm film in 2002, a thinner balloon film with a thickness of 2.8 μm was developed. A 5000 m3 balloon made with this film was launched successfully in 2004. However, three 60,000 m3 balloons with the same film launched in 2005, 2006, and 2007, failed during ascent. The mechanical properties of the 2.8 μm film were investigated intensively to look for degradation of the ultimate strength and its elongation as compared to the other thicker balloon films. The requirement of the balloon film was also studied using an empirical and a physical model assuming an axis-symmetrical balloon shape and the static pressure. It was found that the film was strong enough. A stress due to the dynamic pressure by the wind shear is considered as the possible reason for the unsuccessful flights. A 80,000 m3 balloon with cap films covering 9 m from the balloon top will be launch in 2011 to test the appropriateness of this reinforcement.  相似文献   

14.
The VHF Omnidirectional Range (VOR) system is a primary navigational aid to aircraft in the United States. Although the quantity of stations in the United States exceeds that of other areas, VOR stations are found all over the world. An inexpensive balloon navigational package that uses the existing VOR system has been developed. It employs the principle of triangulation between stations to yield position information. The station selection can be changed by telemetry command during the balloon flight in order to maximize triangulation accuracy and to minimize effects of weak signals. The VOR radials are part of the telemetry transmitted from the balloon package. Preliminary results from several flights in Palestine, Texas indicate that this system may be a viable backup or substitute for the OMEGA system commonly used. Typical accuracy of the down point prediction has been ± 1 mile.  相似文献   

15.
This paper describes the systems for long duration flights developed in Japan for scientific observations. Much efforts have been expended to evolve systems for long duration flights in Japan, by controlling the balloon trajectories with a knowledge of wind pattern at high altitudes over Japan. These systems called “Cycling Balloon”, “Boomerang Balloon” and “New Boomerang Balloon” have been successfully used for the observations by keeping the balloons close to the balloon station.“Relay Balloon” is another system to extend the telemetry range by using an additional balloon as a relay station to link the telemetry from the main balloon.Some detailes of the exhaust valve, ascent meter and automatic level control devices used for the balloon control are also described in the paper.  相似文献   

16.
Launching a large balloon in a limited launching field is a long standing problem in Japan. The largest balloon ever launched successfully was 200,000 m3 in volume. It was launched in 1973. A larger balloon with a volume of 500,000 m3 was tried later, but it burst during the ascending phase. For launching balloons with a large lift exceeding 500 kg, the conventional static launching method had the most serious problem with possible damage to the polyethylene film of the balloon caused by the holding mechanism. After that, we had developed a new static launching method to launch balloons with a total lift of 1.0 ton. For launching a large balloon with a total lift above 1.5 ton, the new static launching method had a weak point in that if there was an air bubble in the folded part of the balloon, it may puncture the balloon as it is pushed by a spool. To avoid this problem, we developed a semi-dynamic launching method in 1999 using a launcher fixed to the ground leaving a freedom of rotation around the vertical axis. We have launched some balloons using the method and have gradually enriched our experience in using this system.In 2003, we successfully launched a balloon with a volume of 500,000 m3 by using the method. This balloon was made of polyethylene films with a thickness of 20 μm and it is the largest balloon ever launched in Japan.  相似文献   

17.
The essential reason of the lobed-pumpkin shaped super-pressure balloon to withstand against the high pressure is that the local curvature of the balloon film is kept small. Recently, it has been found that the small local curvature can also be obtained if the balloon is covered by a diamond-shaped net with a vertically elongated shape. The development of the super-pressure balloon using this method was started from a 3-m balloon with a polyethylene film covered by a net using Kevlar ropes. The ground inflation test showed the expected high burst pressure. Then, a 6-m and a 12-m balloon using a polyethylene film and a net using the Vectran were developed and stable deployment was checked through the ground inflation tests. The flight test of a 3000 m3 balloon was performed in 2013 and shown to resist a pressure of at least 400 Pa. In the future, after testing a new design to relax a possible stress concentration around the polar area, test flights of scaled balloons will be performed gradually enlarging their size. The goal is to launch a 300,000 m3 super-pressure balloon.  相似文献   

18.
Development of a balloon to fly at higher altitudes is one of the most attractive challenges in scientific balloon technologies. After reaching the highest record setting balloon altitude of 53.0 km using the 3.4 μm film in 2002, we tried to make a thinner balloon film. In 2003, we developed a forming die and an air-ring and succeeded in forming a film with a thickness of 3.0 μm and a width of 220 cm. Using this film, we manufactured a balloon with a volume of 5000 m3 and succeeded in flying the balloon up to an altitude of 46.0 km. We then searched for a good combination of resins to make a thinner and wider film and obtained films with widths of 280 cm, and a thickness of 3.0 μm at first, and then 2.8 μm. In 2004, we performed balloon experiments making a 30,000 m3 balloon with the 3.0 μm film and a 5000 m3 balloon with the 2.8 μm film. Both balloons were well manufactured and reached the highest altitudes of 50.7 and 42.6 km, respectively.  相似文献   

19.
针对小卫星的一体化设计思想,采用CCSDS测控体制,星上采用CAN总线的分布网络,对小卫星软件重注入的课题做了深入的研究。  相似文献   

20.
A new static-launch method that we have developed as an improvement of our former method is described. The key procedure is to extend a whole balloon vertically upon the launcher before release, with squeezing the top bubble of the balloon by a soft collar. The new method improved the capability for heavier payload significantly. In 1981, 15 balloons, ranging from 5,000 m3 to 50,000 m3 in volume with a total lift from 150 kg to 650 kg, were launched by this new method successfully.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号