首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermospheric infrared radiance at 4.3 μm is susceptible to the influence of solar-geomagnetic disturbances. Ionization processes followed by ion-neutral chemical reactions lead to vibrationally excited NO+ (i.e., NO+(v)) and subsequent 4.3 μm emission in the ionospheric E-region. Large enhancements of nighttime 4.3 μm emission were observed by the TIMED/SABER instrument during the April 2002 and October–November 2003 solar storms. Global measurements of infrared 4.3 μm emission provide an excellent proxy to observe the nighttime E-region response to auroral dosing and to conduct a detailed study of E-region ion-neutral chemistry and energy transfer mechanisms. Furthermore, we find that photoionization processes followed by ion-neutral reactions during quiescent, daytime conditions increase the NO+ concentration enough to introduce biases in the TIMED/SABER operational processing of kinetic temperature and CO2 data, with the largest effect at summer solstice. In this paper, we discuss solar storm enhancements of 4.3 μm emission observed from SABER and assess the impact of NO+(v) 4.3 μm emission on quiescent, daytime retrievals of Tk/CO2 from the SABER instrument.  相似文献   

2.
Fourier spectrometers for the investigation of infrared spectra of Venus were installed on the recent Soviet orbiters “Venera-15” and “Venera-16”. Many spectra with reliable absolute calibration were obtained in the 280–1500 cm?1 region with a spectral resolution of 5 cm?1 (ground based processing) and about 7 cm?1 (preoprocessed on board) and a spatial resolution of about 100 km at the Venusian cloud top level. Bands of CO2, H2O, H2SO4 and SO2 are identified. The 15 μm-CO2- fundamental band was used for retrieval of altitude dependent temperature profiles. There are significant differences in the cloud structure above 60 km for distinct regions of Venus, demonstrated by differences in the spectra.  相似文献   

3.
The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) experiment is one of four instruments on NASA’s Thermosphere–Ionosphere–Energetics and Dynamics (TIMED) satellite. SABER measures broadband infrared limb emission and derives vertical profiles of kinetic temperature (Tk) from the lower stratosphere to approximately 120 km, and vertical profiles of carbon dioxide (CO2) volume mixing ratio (vmr) from approximately 70 km to 120 km. In this paper we report on SABER Tk/CO2 data in the mesosphere and lower thermosphere (MLT) region from the version 1.06 dataset. The continuous SABER measurements provide an excellent dataset to understand the evolution and mechanisms responsible for the global two-level structure of the mesopause altitude. SABER MLT Tk comparisons with ground-based sodium lidar and rocket falling sphere Tk measurements are generally in good agreement. However, SABER CO2 data differs significantly from TIME-GCM model simulations. Indirect CO2 validation through SABER-lidar MLT Tk comparisons and SABER-radiation transfer comparisons of nighttime 4.3 μm limb emission suggest the SABER-derived CO2 data is a better representation of the true atmospheric MLT CO2 abundance compared to model simulations of CO2 vmr.  相似文献   

4.
By making use of 0.02-nm-resolution sky spectra from the HIRES echelle spectrograph at the W.M. Keck(I) observatory on Mauna Kea, HI, obtained during normal astronomical observations, we have shown that 650–870 nm emission from the vibrationally-excited levels of the O2(b1Σ+g) state is a significant component of the terrestrial nightglow, with a total average intensity from levels v = 1–15 of approximately 150 R. The b1Σ+g state vibrational distribution is bimodal, with peaks at v = 3, 4 and v = 12, and a deep minimum at v = 8 containing only ∼5% of the v = 3 population. The b-X 0-0 band (the Franhofer A-band) is discernible via isotopic emission, with an intensity comparable to that of the strongest of the new b-X bands. There are indications that the vibrationally-excited b1Σ+g state emissions correlate temporally with the OH Meinel band emission, and satellite measurements appear to show that the relatively strong emission from the O2(b-X) 4-3 band originates at an alitutde near 87 km, i.e. in the OH region.In an 8-minute observation on 20 Nov 1999, the Keck telescope was pointed at Venus, and the first high-resolution nightglow spectrum was recorded in the visible spectral region. The oxygen green line was revealed, with an intensity near 150 R, approximately the same as in the terrestrial atmosphere. The only previous observation, from the Venera 9/10 orbiters, did not detect this emission.  相似文献   

5.
6.
Solar proton events (SPEs) are known to have caused changes in constituents in the Earth’s polar neutral middle atmosphere. The past four years, 2000–2003, have been replete with SPEs. Huge fluxes of high energy protons entered the Earth’s atmosphere in periods lasting 2–3 days in July and November 2000, September and November 2001 and October 2003. The highly energetic protons produce ionizations, excitations, dissociations and dissociative ionizations of the background constituents, which lead to the production of HOx (H, OH, HO2) and NOy (N, NO, NO2, NO3, N2O5, HNO3, HO2NO2, ClONO2, BrONO2). The HOx increases lead to short-lived ozone decreases in the polar mesosphere and upper stratosphere due to the short lifetimes of the HOx constituents. Large mesospheric ozone depletions (>70%) due to the HOx enhancements were observed and modeled as a result of the very large July 2000 SPE. The NOy increases lead to long-lived stratospheric ozone changes because of the long lifetime of the NOy family in this region. Polar total ozone depletions >1% were simulated in both hemispheres for extended periods of time (several months) as a result of the NOy enhancements due to the very large SPEs.  相似文献   

7.
Lyman α and 58.4 nm HeI radiations resonantly scattered were observed with EUV spectrophotometers flown on Venera 11 and Venera 12. The altitude distribution of hydrogen was derived by limb observations from 250 km (exobase level) to 50,000 km. In the inner exosphere (up to ? 2,000 km of altitude) the distribution can be described by a classical exospheric distribution with TC = 275 ± 25 K and n = 4?2+3 × 104 atom. cm?3 at 250 km. The integrated number density from 250 to 110 km (the level of CO2 absorption) is 2.1 × 1012 atom. cm?2, a factor of 3 to 6 lower than that predicted by aeronomical models. This number density decreases from the morning side to the afternoon side, or alternately from equatorial to polar regions. Above 2,000 km a “hot” hydrogen population dominates, which can be simulated by T = 103K and n = 103 atom. cm?3 at the exobase level.The optical thickness of helium above 141 km (the level of CO2 absorption for 58.4 nm radiation) was determined to be τo = 3, corresponding to a density at 150 km of 1.6 × 106 cm?3. This is about 3 times less than what was obtained with the Bus Neutral Mass Spectrometer of Pioneer Venus, and about twice less than ONMS measurements, but is in agreement with earlier EUV measurement by Mariner 10 (2 ± 1 × 106 cm?3).  相似文献   

8.
We investigated the physical properties of molecular gas in the nuclear region of M51 (Seyfert 2). We obtained an aperture synthesis 13CO(J = 1 − 0) image using the Nobeyama Millimeter Array (NMA), and compared it with NMA 12CO(J = 1 − 0) and HCN(J = 1 − 0) maps at similar spatial resolutions. Within a radius of 180 pc from the center, the 13CO(1 − 0) integrated intensity was found to be 3 times weaker than that of HCN(1 − 0). Large-Velocity-Gradient (LVG) calculations suggest that the observed high HCN(1 − 0)/13CO(1 − 0) intensity ratio would arise from dense (nH2 ∼ 105 cm−3) and hot (Tkin ≳ 300 K) molecular clouds in the nuclear molecular disk. We also observed in the 12CO(1 − 0), (3 − 2), 13CO(1 − 0), and (3 − 2) lines using the Nobeyama 45m and JCMT 15m telescopes. We detected weak 13CO lines as well as strong 12CO lines. The LVG calculations assuming a two-component model suggest that there is a large amount of low-density (nH2 ∼ 3 − 6 × 102 cm−3), low-temperature (Tkin ∼ 20 – 50 K) gas, and a small amount of high-density (nH2 ≳ 104 cm−3), high-temperature (Tkin ≳ 500 K) gas. The existence of the high-density and high-temperature component, although having a quite small beam filling factor, supports the aperture synthesis observation results mentioned above. Since this dense, hot gas is located in the nuclear molecular disk around the Active Galactic Nucleus (AGN), it may be heated by the strong X-ray radiation and/or by the shock induced by the radio jet.  相似文献   

9.
10.
This paper describes a microwave limb technique for measuring Doppler wind in the Earth’s mesosphere. The research algorithm has been applied to Aura Microwave Limb Sounder (MLS) 118.75 GHz measurements where the O2 Zeeman lines are resolved by a digital autocorrelation spectrometer. A precision of ∼17 m/s for the line-of-sight (LOS) wind is achieved at 80–92 km, which corresponds to radiometric noise during 1/6 s integration time. The LOS winds from Aura MLS are mostly in the meridional direction at low- and mid-latitudes with vertical resolution of ∼8 km. This microwave Doppler technique has potential to obtain useful winds down to ∼40 km of the Earth’s atmosphere if measurements from other MLS frequencies (near H2O, O3, and CO lines) are used. Initial analyses show that the MLS winds from the 118.75 GHz measurements agree well with the TIDI (Thermosphere Ionosphere Mesosphere Energetics and Dynamics Doppler Interferometer) winds for the perturbations induced by a strong quasi 2-day wave (QTDW) in January 2005. Time series of MLS winds reveal many interesting climatological and planetary wave features, including the diurnal, semidiurnal tides, and the QTDW. Interactions between the tides and the QTDW are clearly evident, indicating possible large tidal structural changes after the QTDW events dissipate.  相似文献   

11.
Azolla shows high growth and propagation rates, strong photosynthetic O2-releasing ability and high nutritional value. It is suitable as a salad vegetable and can be cultured on a multi-layered wet bed. Hence, it possesses potential as a fresh vegetable, and to release O2 and absorb CO2 in a Controlled Ecological Life Support System in space. In this study, we investigated the O2-providing characteristics of Azolla in a closed chamber under manned, controlled conditions to lay a foundation for use of Azolla as a biological component in ground simulation experiments for space applications. A closed test chamber, representing a Controlled Ecological Life Support System including an Azolla wet-culture device, was built to measure the changes in atmospheric O2 and CO2 concentrations inside the chamber in the presence of coexisting Azolla, fish and men. The amount of O2 consumed by fish was 0.0805–0.0831 L kg−1 h−1 and the level of CO2 emission was 0.0705–0.0736 L kg−1 h−1; O2 consumption by the two trial volunteers was 19.71 L h−1 and the volume of respiration-released CO2 was 18.90 L h−1. Under 7000–8000 Lx artificial light and Azolla wet-culture conditions, human and fish respiration and Azolla photosynthesis were complementary, thus the atmospheric O2 and CO2 concentrations inside chamber were maintained in equilibrium. The increase in atmospheric CO2 concentration in the closed chamber enhanced the net photosynthesis efficiency of the Azolla colony. This study showed that Azolla has strong photosynthetic O2-releasing ability, which equilibrates the O2 and CO2 concentrations inside the chamber in favor of human survival and verifies the potential of Azolla for space applications.  相似文献   

12.
The ability to generate O2 and absorb CO2 of several co-cultured vegetable plants in an enclosed system was studied to provide theoretical reference for the future man-plant integrated tests. Four kinds of salad plants (Lactuca sativa L. var. Dasusheng, Lactuca sativa L. var. Youmaicai, Gynura bicolor and Cichorium endivia L.) were grown in the CELSS Integration Test Platform (CITP). The environmental factors including O2 and CO2 concentration were continuously monitored on-line and the plant biomass was measured at the end of the test. The changing rules of O2 and CO2 concentration in the system were basically understood and it was found that the O2 generated by the plants could satisfy the respiratory needs of 1.75 persons by calculation. It was also found that the plants could absorb the CO2 breathed out by 2 persons when the light intensity was raised to 550 mmol m−2 s−1 PPF. The results showed that the co-cultured plants hold good compatibility and excellent O2-generating and CO2-absorbing capability. They could also supply some fresh edible vegetable for a 2-person crew.  相似文献   

13.
Accelerated energetic particles in solar flares produced nuclear γ-lines in interactions with ambient solar atmosphere. Analysis of intensity of ratios between various γ-lines allows us to make estimations of abundance of elements, parameters of surrounding media and other solar characteristics. In this article we discuss the flux ratio between two lines from excited states of 12C (f15.11/f4.44) and our results of preliminary calculation of intensity ratio between two neutron capture lines at 3He and 1H (f20.58/f2.223). In particular we consider the opportunity to obtain n(3He)/n(1H) ratio during solar flares and using high-energy gamma-emission studying, based on the satellite data. Possible interpretation of spectral features observed during the January 20, 2005 solar flare is discussed. Preliminary analysis of energy spectrum in the band of 2–21 MeV gives n(3He)/n(1H) ∼ 8 × 10−4 for January 20, 2005 solar flare.  相似文献   

14.
Gynura bicolor DC is not only an edible plant but also a kind of traditional Chinese herbal medicine. G. bicolor DC grown in controlled environmental chambers under 3 CO2 concentrations [450 (ambient), 1500 (elevated), 8000 (super-elevated) μmol mol−1] and 3 LED lighting conditions [white (WL), 85% red + 15% blue (RB15), 70% red + 30% blue (RB30) ] were investigated to reveal plausible antioxidant anabolic responses to CO2 enrichment and LED light quality. Under ambient and elevated CO2 levels, blue light increasing from 15% to 30% was conducive to the accumulation of anthocyanins and total flavonoids, and the antioxidant activity of extract was also increased, but plant biomass was decreased. These results demonstrated that the reinforcement of blue light could induce more antioxidant of secondary metabolites, but depress the effective growth of G. bicolor DC under ambient and elevated CO2 levels. In addition, compared with the ambient and elevated CO2 levels, the increased anthocyanins, total flavonoids contents and antioxidant enzyme activities of G. bicolor DC under super-elevated CO2 level could serve as important components of antioxidative defense mechanism against CO2 stress. Hence, G. bicolor DC might have higher tolerance to CO2 stress.  相似文献   

15.
The RS CVn stars Capella and σ2 CrB have been measured with EXOSAT in soft and medium X-rays for about 24 hours each and the less active late-type star Procyon for about 6.5 hours. In addition, the RS CVn star γ. And was twice observed about one month apart for a total of about 7 hours, with the ME and the LE in the photometer mode only. All three RS CVn stars were detected with the ME-detector. The star σ2 CrB showed a flare both in LE and ME with a rise time of about twelve minutes and a decay time of three hours. The active late-type stars σ2 CrB and Capella show in the spectral region between 90 and 140 A lines from Fe XVIII to Fe XXIII, which can be resolved with the moderate resolution (Δγ ≈ 5 A) of the spectrometer. These lines are indicative of the presence of hot (≈ 10 MK) plasma like that in a Solar flare. In contrast, the spectrum of the cooler corona of the star Procyon does not show the hot Fe XXII and Fe XXIII lines but instead a blend at 175 A of Fe IX, X and XI lines that are formed in a typically quiet corona of a temperature around 1.5 MK. From the spectral intensities and the additional results of the simultaneous multi-color photometry coronal temperatures and emission measures are derived. There are indications in the spectra that the emission should be interpreted in terms of differential emission measure distribution models.  相似文献   

16.
A preliminary analysis of infrared observations of comets P/Crommelin and P/Tempel 1 is presented. Comet P/Crommelin was observed from UKIRT over the range 1–20 micron, using standard filters. From the shape of the thermal emission spectrum, the temperature of the dust grains is estimated (T = 314 ± 3344K) and also the dust production rate (1.3 × 105gs?1). Comet P/Tempel 1 was observed with the Infrared Astronomical Satellite (IRAS). The emission is found to be considerably extended and there is also evidence for temperature variation of the dust grains as indicated by the 12 to 25 micron flux ratio.  相似文献   

17.
Long-duration manned space missions mandate the development of a sustainable life support system and effective countermeasures against damaging space radiation. To mitigate the risk of inevitable exposure to space radiation, cultivation of fresh fruits and vegetables rich in antioxidants is an attractive alternative to pharmacological agents. However it has yet to be established whether antioxidant properties of crops can be preserved or enhanced in a space environment where environmental conditions differ from that which plants have acclimated to on earth. Scallion (Allium fistulosum) rich in antioxidant vitamins C and A, and flavonoids was used as a model plant to study the impact of a range of CO2 concentrations and light intensities that are likely encountered in a space habitat on food quality traits. Scallions were hydroponically grown in controlled environmental chambers under a combination of 3 CO2 concentrations of 400, 1200 and 4000 μmol mol−1 and 3 light intensity levels of 150, 300, 450 μmol m−2 s−1. Total antioxidant activity (TAA) of scallion extracts was determined using a radical cation scavenging assay. Both elevated CO2 and increasing light intensity enhanced biomass accumulation, but effects on TAA (based on dry weight) differed. TAA was reduced for plants grown under elevated CO2, but remained unchanged with increases in light intensity. Elevated CO2 stimulated greater biomass production than antioxidants, while an increase in photosynthetic photo flux promoted the synthesis of antioxidant compounds at a rate similar to that of biomass. Consequently light is a more effective stimulus than CO2 for antioxidant production.  相似文献   

18.
Plants can provide a means for removing carbon dioxide (CO2) while generating oxygen (O2) and clean water for life support systems in space. To study this, 20 m2 stands of potato (Solanum tuberosum L.) plants were grown in a large (113 m3 vol.), atmospherically closed chamber. Photosynthetic uptake of CO2 by the stands was detected about 10 DAP (days after planting), after which photosynthetic rates rose rapidly as stand ground cover and total light interception increased. Photosynthetic rates peaked ca. 50 DAP near 45 μmol CO2 m−2 s−1 under 865 μmol m−2 s−1 PPF (average photosynthetic photon flux), and near 35 μmol CO2 m−2 s−1 under 655 μmol m−2 s−1 PPF. Short term changes in PPF caused a linear response in stand photosynthetic rates up to 1100 μmol m−2 s−1 PPF, with a light compensation point of 185 μmol m−2 s−1 PPF. Comparisons of stand photosynthetic rates at different CO2 concentrations showed a classic C3 response, with saturation occurring near 1200 μmol mol−1 CO2 and compensation near 100 μmol mol−1 CO2. In one study, the photoperiod was changed from 12 h light/12 h dark to continuous light at 58 DAP. This caused a decrease in net photosynthetic rates within 48 h and eventual damage (scorching) of upper canopy leaves, suggesting the abrupt change stressed the plants and/or caused feedback effects on photosynthesis. Dark period (night) respiration rates increased during early growth as standing biomass increased and peaked near 9 μmol CO2 m−2 s−1 ca. 50 DAP, after which rates declined gradually with age. Stand transpiration showed a rapid rise with canopy ground cover and peaked ca. 50 DAP near 8.9 L m−2 d−1 under 860 μmol m−2 s−1 PPF and near 6.3 L m−2 d−1 under 650 μmol m−2 s−1 PPF. Based on the best photosynthetic rates from these studies, approximately 25 m2 of potato plants under continuous cultivation would be required to support the CO2 removal and O2 requirements for one person.  相似文献   

19.
A preliminary analysis of high-resolution infrared spectra of the aurorally dosed lower thermosphere above Poker Flat Research Range (PFRR), Alaska, obtained by an uplooking cryogenic field-widened interferometer (FWI) is presented. Both models and spectral-fitting/resolution-enhancement methods are used to discuss the behavior of NO, CO, NO+, and CO2 v3 vibrational bands in the high-latitude thermosphere.  相似文献   

20.
The metabolic consequence of suboptimal (400 μmol mol−1 or ppm), near-optimal (1500 ppm) and supra-optimal (10,000 ppm) atmospheric carbon dioxide concentrations [CO2] was investigated in an attempt to reveal plausible underlying mechanisms for the differential physiological and developmental responses to increasing [CO2]. Both non-targeted and targeted metabolite profiling by GC–MS and LC–MS were employed to examine primary and secondary metabolites in wheat (Triticum aestivum, cv Yocoro rojo) continuously exposed to these [CO2] levels for 14, 21 and 28 days. Metabolite profile was altered by both [CO2] and physiological age. In general, plants grown under high [CO2] exhibited a metabolite profile characteristic of older plants under ambient CO2. Elevated [CO2] resulted in higher levels of phosphorylated sugar intermediates, though no clear trend in the content of reducing sugars was observed. Transient starch content was enhanced by increasing [CO2] to a much greater extent at 10,000 ppm CO2 than at 1500 ppm CO2. The percentage increase of starch content resulting from CO2 enrichment declined as plants develope. In contrast, elevated [CO2] promoted the accumulation of secondary metabolites (flavonoids) progressively to a greater extent as plants became mature. Elevated [CO2] to 1500 ppm induced a higher initial growth rate, while super-elevated [CO2] appeared to negate such initial growth promotion. However, after 4 weeks, there was no difference in vegetative growth between 1500 and 10,000 ppm CO2-grown plants, both elevated CO2 levels resulted in an overall 25% increase in biomass over the control plants. More interestingly, elevated atmospheric [CO2] reduced evapotranspiration rate (ET), but further increase to the supra-optimal level resulted in increased ET (a reversed trend), i.e. ET at 1500 ppm < ET at 10,000 ppm < ET at 400 ppm. The differential effect of elevated and super-elevated CO2 on plants was further reflected in the nitrogen dynamics. These results provide the potential metabolic basis for the differential productivity and stomatal function of plants grown under elevated and super-elevated CO2 levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号