首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the process of exploring pre-earthquake thermal anomalies using satellite infrared data, Blackett et al. (2011) found that the previously reported anomalies before the 2001 Mw 7.7 Gujarat earthquake, in India, were related to positive biases caused by data gaps due to cloud cover and mosaicing of neighboring orbits of MODIS satellite data. They supposed that such effects could also be responsible for other cases. We noted a strip-shaped TIR anomaly on March 17th, 2010, 28?days before the Ms. 7.1 Yushu earthquake (Qin et al., 2011). Here we again investigate multi-year infrared satellite data in different bands to discriminate whether the anomaly is associated with the earthquake, or is only bias caused by the data gaps. From the water vapor images, we find lots of clouds that have TIR anomalies. However, on the cloudiness background, there is an obvious strip-shaped gap matching the tectonic faults almost perfectly. In particular, the animation loops of hourly water vapor images show that the cloud kept moving from west to east, while they never covered the strip-shaped gap. We consider that the cloud with this special spatial pattern should have implied the abnormal signals associated with the seismogenic process. Based on current physical models, the satellite IR anomalies both on TIR and water vapor bands can qualitatively be explained using synthetic mechanisms.  相似文献   

2.
METEOSAT observations in the thermal infrared “window” and “water vapor” channels, as well as in the visible channel, reveal diurnal variations over large areas which remain significant in the monthly means. The variations in the infrared correspond to diurnal cycles in the surface skin temperature (over land) and in cloud cover (over both land and sea) at various levels, and they must appear as a more or less significant diurnal variation in the integrated longwave emission to space of the Earth-atmosphere system. The diurnal cycle in the reflected shortwave radiation is influenced by these meteorological variations as well as by the astronomical cycle and the anisotropic reflectance. These must be taken into account in studies of Earth Radiation Budget variations. Using nearly simultaneous and spatially coincident pixel data from the ERBE scanner on ERBS and from METEOSAT in November 1984, we construct provisional transfer functions relating the narrow-band METEOSAT infrared observations to the longwave radiant exitance at the top of the atmosphere. We apply these transfer functions to the METEOSAT ISCCP B2 data sets for the summers of 1983–1985, and compare the resulting longwave radiant exitance estimates, with particular attention to the diurnal variation, which should be relatively insensitive to the inaccuracy inherent in applying the provisional (November 1984) transfer functions to the 1983–1985 data.  相似文献   

3.
Land surface temperature (LST) calculation utilizing satellite thermal images is very difficult due to the great temporal variance of atmospheric water vapor in the atmosphere which strongly affects the thermal radiance incoming to satellite sensors. In this study, Split-Window (SW) and Radial Basis Function (RBF) methods were utilized for prediction of LST using precipitable water for Turkey. Coll 94 Split-Window algorithm was modified using regional precipitable water values estimated from upper-air Radiosond observations for the years 1990–2007 and Local Split-Window (LSW) algorithms were generated for the study area. Using local algorithms and Advanced Very High Resolution Radiometer (AVHRR) data, monthly mean daily sum LST values were calculated. In RBF method latitude, longitude, altitude, surface emissivity, sun shine duration and precipitable water values were used as input variables of the structure. Correlation coefficients between estimated and measured LST values were obtained as 99.23% (for RBF) and 94.48% (for LSW) at 00:00 UTC and 92.77% (for RBF) and 89.98% (for LSW) at 12:00 UTC. These meaningful statistical results suggest that RBF and LSW methods could be used for LST calculation.  相似文献   

4.
The moderate resolution imaging spectroradiometer (MODIS) on board the Aqua satellite measures visible and infrared radiation in 36 wavebands, providing simultaneous images of sea-surface temperature (SST) and chlorophyll-a (chl-a) concentration in the upper meters of the sea. For the first time, truly synoptic SST and chl-a- concentration images are available. These images are daily and of 1.1-km resolution.The strong contrasts in sea-surface temperature and surface chlorophyll-a concentration over the southwest Atlantic make satellite infrared and color images particularly appropriate tools for studying the Brazil–Malvinas (B/M) Current confluence. We examine two years (July, 2002–June, 2004) of Aqua/MODIS infrared and color images to document the precise structure of the B/M confluence simultaneously in SST and chl-a.We first compared MODIS weekly data with simultaneous independent satellite data. Spatial and temporal distributions are similar for both SST and color. Differences between MODIS and SeaWiFS (sea-viewing wide field-of-view sensor) are large in pigment-rich regions along the coast and shelf. Here, we focused on the offshore region where differences are small.For each season, exceptionally cloud-free 1.1-km resolution MODIS images showed two thermal fronts, one corresponding to the Brazil Current’s southernmost limit, the other, to the Malvinas Current’s northernmost limit. These two fronts remained quite close to each other (within 50 km) and were separated by water with an SST and chl-a concentration typical of the continental shelf waters. In spring, the water rich in chl-a from the platform is squeezed between the two currents and entrained away from the coast in between the two thermal fronts. In the frontal region, SST gradient maxima trace the contour of the chl-a-rich water.Enlargements of the frontal region and of the turbulent region downstream of the frontal collision are presented and analyzed. MODIS documents in an unprecedented way the SST and chl-a filaments as they are distorted and mixed by meso- and sub-mesoscale structures in the strain-dominated region of the B/M confluence. It is suggested that a substantial part of the chl-a local maximum in the Malvinas return flow is of continental-shelf origin.  相似文献   

5.
This paper reports a numerical investigation on the effects of water vapor condensing inside the air bag of a stratospheric airship on its ascending performance. The kinetic and thermal model considering vapor condensation was established, based on which a computer program was written in Fortran. The simulation results show that the vapor condensation remarkably affects the kinetic and thermal characteristics of the stratospheric airship in the ascent process. During the ascent process below 11 km, a large amount of latent heat is released when the water vapor in the air inside the air bag of the stratospheric airship condenses, which results in the increase of the temperature and the reduction of the weight of the air in the air bag, causing the airship to speed up, the accelerated expansion of the helium, and the decrease of the helium temperature in the helium bag. When the flight altitude is higher than 11 km, the effect of vapor condensation on the kinetic and thermal characteristics of the stratospheric airship is negligible because vapor is virtually nonexistent in the air.  相似文献   

6.
在红外热像无损检测中直接获取的原始热像往往信噪比较低、温度对比度较差.为了抑制各种噪声的不良影响,使红外热像无损检测所重构的数字图像有较高的缺陷对比度,从而提高缺陷探测能力,提出了采用奇异值分解法对红外数字图像序列进行处理和增强的方法,并进行了验证.介绍了奇异值分解法的原理;用奇异值分解法对实验中采集的红外热像序列进行处理;以信噪比为指标对图像处理效果进行了定量评定.研究表明奇异值分解法具有抽取红外热像序列中反映试件内部缺陷信息代数特征的能力,可消除加热不均效应、提高图像的信噪比,且缺陷在图像中所处的位置不影响奇异值分解法的使用效果. 因此奇异值分解法是红外热像无损检测中红外热图像序列处理的有效方法.   相似文献   

7.
在热红外视频监控环境下,针对热红外图像因周围环境温度变化而导致热红外图像灰度值反转的问题,提出了一种通过热红外图像的边界特征和运动特征的融合来提取行人目标前景区域的方法。首先,利用行人目标和周围环境存在的显著性差异来提取行人目标的边界特征,对所提取的边界特征进行边界填充,并利用热红外行人目标分类器来排除误检目标,从而获取最终的边界特征提取结果;其次,利用相邻帧之间的运动信息来获取行人目标的运动特征,对所获取的运动特征进行形态学处理,并利用热红外行人目标分类器来排除误检目标,从而获取最终的运动特征提取结果;最后,对所获取的边界特征提取结果和运动特征提取结果进行融合来获得最终的检测结果。实验证明,在公开的OSU和LSI热红外图像行人目标检测数据集中,所提方法能够有效地降低环境温度变化的不利影响,并提高行人目标前景区域提取的精度。   相似文献   

8.
Atmospheric leakage between a CELSS and its surround is driven by the differential pressure between the two. In an earth-based CELSS, both negative and positive differential pressures of atmosphere are created as the resultant of three influences: thermal expansion/contraction, transition of water between liquid and vapor phases, and external barometric pressure variations. The resultant may typically be on the order of 5000 pascals. By providing a flexible expansion chamber, the differential pressure range can be reduced two, or even three, orders of magnitude, which correspondingly reduces the leakage. The expansion chamber itself can also be used to measure the leak rate. Independent confirmation is possible by measurement of the progressive dilution of a trace gas. These methods as employed at the Biosphere 2 facility have resulted in an estimated atmospheric leak rate of less than 10 percent per year.  相似文献   

9.
基于DFT的水射流红外热像频域时空分析   总被引:1,自引:0,他引:1  
基于二维离散傅里叶变换及空间频谱分析,对水射流湍流脉动的空间尺度进行了研究,得到了由红外辐射温度表征的被动标量湍流场在对流区、耗散区、惯性子区的特征空间尺度及其时间演化规律.对射流不同区域的关心点重新采样,得到湍流场中关心点的时间序列,利用一维离散傅里叶变换,分析了对流区大尺度涡中心、惯性子区小尺度涡中心、耗散区及射流轴心线上各关心点的湍流波动特征.计算了时间序列频谱的分形维数,研究了自由湍流不同尺度区间上述各关心点湍流脉动的分形特征.   相似文献   

10.
The Limb Infrared Monitor of the Stratosphere (LIMS) is a 6 channel scanning radiometer which measures the infrared emission by the earth's limb. These measurements are inverted to yield distributions of temperature, ozone, water vapor, nitric acid and nitrogen dioxide. The instrumentation and its orbital performance are briefly described. Retrievals of temperature and nitrogen dioxide are presented, with a discussion of their precision. Comparisons to in-situ rocket and balloon measurements are used to assess their accuracy. Special mention is made of the temperature data supplied for the FGGE II-b data sets. Results for ozone, water vapor and nitric acid are presented in companion papers.  相似文献   

11.
The precipitable water vapor is one of the most active gases in the atmosphere which strongly affects the climate. China's second-generation polar orbit meteorological satellite FY-3A equipped with a Medium Resolution Spectral Imager (MERSI) is able to detect atmospheric water vapor. In this paper, water vapor data from AERONET, radiosonde and MODIS were used to validate the accuracy of the MERSI water vapor product in the different seasons and climatic regions of East Asia. The results show that the values of MERSI water vapor product are relatively lower than that of the other instruments and its accuracy is generally lower. The mean bias (MB) was ?0.8 to ?12.7?mm, the root mean square error (RMSE) was 2.2–17.0?mm, and the mean absolute percentage error (MAPE) varied from 31.8% to 44.1%. On the spatial variation, the accuracy of MERSI water vapor product in a descending order was from North China, West China, Japan -Korea, East China, to South China, while the seasonal variation of accuracy was the best for winter, followed by spring, then in autumn and the lowest in summer. It was found that the errors of MERSI water vapor product was mainly due to the low accuracy of radiation calibration of the MERSI absorption channel, along with the inaccurate look-up table of apparent reflectance and water vapor within the water vapor retrieved algorithm. In addition, the surface reflectance, the mixed pixels of image cloud, the humidity and temperature of atmospheric vertical profile and the haze were also found to have affected the accuracy of MERSI water vapor product.  相似文献   

12.
By using both high-resolution orthoimagery and medium-resolution Landsat satellite imagery with other geospatial information, several land surface parameters including impervious surfaces and land surface temperatures for three geographically distinct urban areas in the United States – Seattle, Washington, Tampa Bay, Florida, and Las Vegas, Nevada, are obtained. Percent impervious surface is used to quantitatively define the spatial extent and development density of urban land use. Land surface temperatures were retrieved by using a single band algorithm that processes both thermal infrared satellite data and total atmospheric water vapor content. Land surface temperatures were analyzed for different land use and land cover categories in the three regions. The heterogeneity of urban land surface and associated spatial extents were shown to influence surface thermal conditions because of the removal of vegetative cover, the introduction of non-transpiring surfaces, and the reduction in evaporation over urban impervious surfaces. Fifty years of in situ climate data were integrated to assess regional climatic conditions. The spatial structure of surface heating influenced by landscape characteristics has a profound influence on regional climate conditions, especially through urban heat island effects.  相似文献   

13.
A semigray (shortwave and longwave) surface temperature model is developed from conditions on Venus, Earth and Mars, where the greenhouse effect is mostly due to carbon dioxide and water vapor. In addition to estimating longwave optical depths, parameterizations are developed for surface cooling due to shortwave absorption in the atmosphere, and for convective (sensible and latent) heat transfer. An approximation to the Clausius–Clapeyron relation provides water–vapor feedback. The resulting iterative algorithm is applied to three “super-Earths” in the Gliese 581 system, including the “Goldilocks” planet g (Vogt et al., 2010). Surprisingly, none of the three appear habitable. One cannot accurately locate a star’s habitable zone without data or assumptions about a planet’s atmosphere.  相似文献   

14.
Information about the amount and spatial structure of atmospheric water vapor is essential in understanding meteorology and the Earth environment. Space-borne remote sensing offers a relatively inexpensive method to estimate atmospheric water vapor in the form of integrated water vapor (IWV). The research activity reported in the present paper is based on the data acquired by the HRPT/MODIS (High Resolution Picture Transmission, MODerate resolution Imaging Spectroradiometer) receiving station established in Budapest (Hungary) by the Space Research Group of the Eötvös Loránd University. Integrated water vapor is estimated by the remotely sensed data of the MODIS instrument with different methods and also by the operational numerical weather prediction model of the European Centre for Medium-Range Weather Forecasts (ECMWF). Radiosonde data are used to evaluate the accuracy of the different IWV fields though it has been pointed out that the in situ data also suffers from uncertainties. It was found that both the MODIS and the ECMWF based fields are of good accuracy. The satellite data represent finer scale spatial structures while the ECMWF data have a relatively poor spatial resolution. The high quality IWV fields have proved to be useful for radiative transfer studies such as the atmospheric correction of other satellite data from times different than the overpass times of satellites Terra/Aqua and the forecast times of the model data. For this purpose the temporal variability of IWV is scrutinized both using ECMWF and MODIS data. Taking advantage of Terra and Aqua overpasses, the mean rate of change of IWV estimated by the near infrared method was found to be 0.47 ± 0.45 kg m−2 h−1, while it was 0.13 ± 0.65 kg m−2 h−1 based on the infrared method. The numerical weather prediction model’s analysis data estimated −0.01 ± 0.13 kg m−2 h−1 for the mean growth rate, while using forecast data it was 0.24 ± 0.18 kg m−2 h−1. MODIS data should be used when available for the estimation of the IWV in other studies. If no satellite data are available, or available data are only from one overpass, ECMWF based IWV can be used. In this case the analysis fields (or the satellite field) should be used for temporal extrapolation but the rate of change should be calculated from the forecast data due to its higher temporal resolution.  相似文献   

15.
In this work a methodology for inferring water cloud macro and microphysical properties from nighttime MODIS imagery is developed. This method is based on the inversion of a theoretical radiative transfer model that simulates the radiances detected in each of the sensor infrared bands. To accomplish this inversion, an operational technique based on Artificial Neural Networks (ANNs) is proposed, whose main characteristic is the ability to retrieve cloud properties much faster than conventional methods. Furthermore, a detailed study of input data is performed to avoid different sources of errors that appear in several MODIS infrared channels. Finally, results of applying the proposed method are compared with in-situ measurements carried out during the DYCOMS-II field experiment.  相似文献   

16.
After applying special edge detection techniques to METEOSAT water vapor images midtropospheric wind vectors have been derived in cloudfree areas by using the single point tracking method. A comparison of derived wind vectors with radiosonde winds gave rms-differences of 5ms?1 for wind velocity and 16° for wind direction.  相似文献   

17.
针对现有红外和合成孔径雷达(Synthetic Aperture Radar,SAR)图像的融合算法融合质量差、边缘轮廓不清晰、效率低下、可视性差,目标检测效率低等问题,提出一种基于非下采样轮廓波变换的融合算法。首先采用非下采样轮廓波变换对预处理的红外和SAR图像进行分解,获得各自低频和带通方向图像,接着根据红外和SAR图像的特征选取其含重要目标信息的频带进行低频图像和带通方向图像融合。为了检验本文所提出算法性能的优越性,采用两组红外和SAR图像进行融合实验,与其他图像融合算法进行对比,并对融合图像进行目标检测,证明了该融合算法能有效提高多源图像目标检测率。  相似文献   

18.
For accurate measurements of sea surface temperature in the 11 μm window region, it is necessary to eliminate the effect of atmospheric absorption. A technique using observations from different angles is one of the methods of eliminating this atmospheric effect. This technique is not possible at present, using a single satellite; but using two geosynchronous satellites, it is possible to observe a common area from two different elevation angles. To correct for atmospheric effects, therefore, we compared the infrared data obtained from observations at about the same time (less than a minute apart) on the equator using the GMS-1 and GMS-2 satellites which had about 20° longitudinal separation. It was found that if the infrared spectral wavelength channel of one geosynchronous satellite is selected to be different from that of the other, it is possible to improve the two-satellite observation technique of estimating water vapor content in a tropical atmosphere. This technique corresponds to split window measurements by the AVHRR radiometer on board the NOAA-7 satellite.  相似文献   

19.
The present study is an assessment and identification of urban heat island (UHI) in the environment of one of the fastest urbanizing city of India, Delhi Metropolis, employing satellite image of ASTER and Landsat 7 ETM+ in the thermal infrared region 3–14 μm. Temporal (2001 and 2005) ASTER datasets were used to analyze the spatial structure of the thermal urban environment subsequently urban heat island (UHI) in relation to the urban surface characteristics and land use/land cover (LULC). The study involves derivation of parameters governing the surface heat fluxes, constructing statistics of ASTER thermal infrared images along with validation through intensive in situ measurements. The average images reveal spatial and temporal variations of land surface temperature (LST) of night-time and distinct microclimatic patterns. Central Business District (CBD) of Delhi, (Connaught Place, a high density built up area), and commercial/industrial areas display heat islands condition with a temperature greater than 4 °C compared to the suburbs. The small increase in surface temperature at city level is mainly attributed to cumulative impact of human activities, changes in LULC pattern and vegetation density. In this study the methodology takes into account spatially-relative surface temperatures and impervious surface fraction value to measure surface UHI intensity between the urban land cover and rural surroundings. Both the spatial and temporal variation in surface temperature associated with impervious surface area (ISA) has been evaluated to assess the effect of urbanization on the local climate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号