首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
R. P. Lin 《Space Science Reviews》2006,124(1-4):233-248
Observations of hard X-ray (HXR)/γ-ray continuum and γ-ray lines produced by energetic electrons and ions, respectively, colliding with the solar atmosphere, have shown that large solar flares can accelerate ions up to many GeV and electrons up to hundreds of MeV. Solar energetic particles (SEPs) are observed by spacecraft near 1 AU and by ground-based instrumentation to extend up to similar energies, but it appears that a different acceleration process, one associated with fast Coronal Mass Ejections (CMEs) is responsible. Much weaker SEP events are observed that are generally rich in electrons, 3He, and heavy elements. The energetic particles in these events appear to be similar to those accelerated in flares. The Ramaty High Energy Solar Spectroscopic Imager (RHESSI) mission provides high-resolution spectroscopy and imaging of flare HXRs and γ-rays. The observations of the location, energy spectra, and composition of the flare accelerated energetic particles at the Sun strongly imply that the acceleration is closely related to the magnetic reconnection that releases the energy in solar flares. Here preliminary comparisons of the RHESSI observations with observations of both energetic electrons and ions near 1 AU are reviewed, and the implications for the particle acceleration and escape processes are discussed.  相似文献   

2.
The Electric Field Instrument (EFI) for THEMIS   总被引:2,自引:0,他引:2  
The design, performance, and on-orbit operation of the three-axis electric field instrument (EFI) for the NASA THEMIS mission is described. The 20 radial wire boom and 10 axial stacer boom antenna systems making up the EFI sensors on the five THEMIS spacecraft, along with their supporting electronics have been deployed and are operating successfully on-orbit without any mechanical or electrical failures since early 2007. The EFI provides for waveform and spectral three-axis measurements of the ambient electric field from DC up to 8 kHz, with a single, integral broadband channel extending up to 400 kHz. Individual sensor potentials are also measured, providing for on-board and ground-based estimation of spacecraft floating potential and high-resolution plasma density measurements. Individual antenna baselines are 50- and 40-m in the spin plane, and 6.9-m along the spin axis. The EFI has provided for critical observations supporting a clear and definitive understanding of the electrodynamics of both the boundaries of the terrestrial magnetosphere, as well as internal processes, such as relativistic particle acceleration and substorm dynamics. Such multi-point electric field observations are key for pushing forward the understanding of electrodynamics in space, in that without high-quality estimates of the electric field, the underlying electromagnetic processes involved in current sheets, reconnection, and wave-particle interactions may only be inferred, rather than measured, quantified, and used to discriminate between competing hypotheses regarding those processes.  相似文献   

3.
The Transient Gamma-Ray Spectrometer (TGRS) to be flown aboard the WIND spacecraft is primarily designed to perform high resolution spectroscopy of transient -ray events, such as cosmic -ray bursts and solar flares over the energy range 25 keV to 8.2 MeV with an expected spectroscopic resolution of 3 keV at 1 MeV. The detector itself consists of a 215 cm3 high purityn-type Ge crystal kept at cryogenic temperatures by a passive radiative cooler. The geometric field of view defined by the cooler is 1.8 steradian. To avoid continuous triggers by soft solar events, a thin BeCu Sun-shield around the sides of the cooler has been provided. A passive Mo/Pb occulter, which modulates signals from within ±5° of the ecliptic plane at the spacecraft spin frequency, is used to identify and study solar flares, as well as emission from the galactic plane and center. Thus, in addition to transient event measurements, the instrument will allow the search for possible diffuse background lines and monitor the 511 keV positron annihilation radiation from the galactic center. In order to handle the typically large burst count rates, which can be in excess of 100 kHz, burst data are stored directly in an onboard 2.75 Mbit burst memory with an absolute timing accuracy of ±1.5 ms after ground processing. The memory is capable of storing the entire spectral data set of all but the largest bursts. WIND is scheduled to be launched on a Delta II launch vehicle from Cape Canaveral on November 1, 1994. After injection into a phasing orbit, the spacecraft will execute a double lunar swing-by before being moved into a controlled halo orbit about theL1 Lagrangian point (250R e towards the Sun). This will provide a 5 light-second light travel time with which to triangulate gamma-ray burst sources with Earth-orbiting systems, such as those on-board the Gamma-Ray Observatory (GRO). The response of instrument to transient -ray events such as GRB's and solar flares will be presented as well as the expected response to steady state point sources and galactic center line emission.  相似文献   

4.
5.
Gamma-ray lines arise from radioactivities produced in nucleosynthesis sites, and from deexcitation of nuclei which have been activated through energetic particle collisions. Since the bulk of nucleosynthesis activity relates to activities inside massive stars, both these processes are related to the likely sources of cosmic rays: Supernova remnants show radioactivity afterglows at time scales which bracket their likely phases of relevance as CR acceleration sites; 26Al radioactivity may trace regions of intense wind interactions from groups of massive stars, and also encode information about the possible injection of matter into CR acceleration environments through interstellar dust grains. The status of -ray line measurements after the Compton Observatory mission is presented, with models and interpretations of current results, and the prospects of upcoming measurements.  相似文献   

6.
Magnetic field experiment for Voyagers 1 and 2   总被引:1,自引:1,他引:0  
The magnetic field experiment to be carried on the Voyager 1 and 2 missions consists of dual low field (LFM) and high field magnetometer (HFM) systems. The dual systems provide greater reliability and, in the case of the LFM's, permit the separation of spacecraft magnetic fields from the ambient fields. Additional reliability is achieved through electronics redundancy. The wide dynamic ranges of ± 0.5 G for the LFM's and ± 20 G for the HFM's, low quantization uncertainty of ± 0.002 ( = 10–5 G) in the most sensitive (± 8 ) LFM range, low sensor RMS noise level of 0.006 , and use of data compaction schemes to optimize the experiment information rate all combine to permit the study of a broad spectrum of phenomena during the mission. Objectives include the study of planetary fields at Jupiter, Saturn, and possibly Uranus; satellites of these planets; solar wind and satellite interactions with the planetary fields; and the large-scale structure and microscale characteristics of the interplanetary magnetic, field. The interstellar field may also be measured.  相似文献   

7.
We present a new method for a high-accuracy reconstruction of the attitude for a slowly spinning satellite. This method, referred to as the fully-dynamic approach, explores the possibility to describe the satellite's attitude as that of a rigid body subject to continuous external torques. The method is tried out on the Hipparcos data and is shown to reduce the noise for the along-scan attitude reconstruction for that mission by about a factor two to three. The dynamic modelling is expected to give a more accurate representation of the satellite's attitude than was obtained with a pure mathematical modelling. As such, it decreases the degrees of freedom in the a posteriori reconstruction. Some of the decrease is obtained through accumulating and subsequently implementing information on high frequency components in the solar radiation torques, which show to be systematic and predictable. This could be expected, as they are primarily linked to the external geometry and optical properties of the satellite. In the context of an astrometric mission, the methods presented here can only be applied as a final iteration step: the star positions that are used to reconstruct the attitude are also part of the scientific objectives of the mission. An estimate for the potential of a re-reduction of the Hipparcos data using the fully-dynamic model for the attitude reconstruction was obtained from test reductions of the first 24 months of mission data. Improvement of the accuracies of the astrometric parameters for all stars brighter than Hp=9.0 appears possible. The noise on the astrometric parameters for these stars was affected significantly by the along-scan attitude noise, which dominated for stars brighter than Hp=4.5. The possible improvement for stars brighter than about Hp=4.5 may, after iterations, be as much as a factor three. The reduced noise levels also allow a more accurate calibration and monitoring of instrument parameters, leading potentially to a better understanding of the instrument and the scientific data obtained with it. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
The Far Ultraviolet Spectroscopic Explorer (FUSE) satellite was launched on June 24, 1999, on a three-year mission to explore the universe using the technique of high-resolution spectroscopy in the far-ultraviolet spectral region. The FUSE instrument comprises many subsystems, each of which contributes in an essential way to the success of the mission. The instrument system engineer oversees the engineering of all elements in such a complex technical project. In performing system engineering for the FUSE instrument's command, telemetry, data processing and data storage functions, and in leading the engineering efforts for the development of the FUSE instrument on-board computer, the author has learned valuable lessons about the characteristics that are prerequisite to success for a space system engineer. These characteristics fall under various categories of acquired, practical know-how. These categories are described with illustrations drawn from the development of the FUSE instrument. In addition to these practical skills and the concomitant knowledge, the system engineer needs personal integrity, which is the link that connects knowledge with know-how and makes them work together to motivate a team of subsystem engineers. This, too, will be discussed  相似文献   

9.
10.
It is argued that the high-energy X-ray and -ray emission from flaring blazars is beamed radiation from the relativistic jet supporting the relativistic beaming hypothesis and the unified scenario for AGNs. Most probably the high-energy emission results from inverse Compton scattering by relativistic electrons and positrons in the jet of radiation originating external to the jet plus pair annihilation radiation from the jet. Future positive TeV detections of EGRET AGN sources will be decisive to identify the prominent target photon radiation field. Direct -ray production by energetic hadrons is not important for the flaring phase in -ray blazars, but the acceleration of energetic hadrons during the quiescent phase of AGNs is decisive as the source of secondary electrons and positrons through photo-pair and photo-pion production. Injection of ultrahigh energy secondary electrons and positrons into a stochastic quasilinear acceleration scheme during the quiescent AGN phase leads to cooling electron-positron distribution functions with a strong cut-off at low but relativistic energy that under certain local conditions may trigger a plasma instability that gives rise to an explosive event and the flaring -ray phase.  相似文献   

11.
The Radiation Assessment Detector (RAD) Investigation   总被引:1,自引:0,他引:1  
The Radiation Assessment Detector (RAD) on the Mars Science Laboratory (MSL) is an energetic particle detector designed to measure a broad spectrum of energetic particle radiation. It will make the first-ever direct radiation measurements on the surface of Mars, detecting galactic cosmic rays, solar energetic particles, secondary neutrons, and other secondary particles created both in the atmosphere and in the Martian regolith. The radiation environment on Mars, both past and present, may have implications for habitability and the ability to sustain life. Radiation exposure is also a major concern for future human missions. The RAD instrument combines charged- and neutral-particle detection capability over a wide dynamic range in a compact, low-mass, low-power instrument. These capabilities are required in order to measure all the important components of the radiation environment. RAD consists of the RAD Sensor Head (RSH) and the RAD Electronics Box (REB) integrated together in a small, compact volume. The RSH contains a solid-state detector telescope with three silicon PIN diodes for charged particle detection, a thallium doped Cesium Iodide scintillator, plastic scintillators for neutron detection and anti-coincidence shielding, and the front-end electronics. The REB contains three circuit boards, one with a novel mixed-signal ASIC for processing analog signals and an associated control FPGA, another with a second FPGA to communicate with the rover and perform onboard analysis of science data, and a third board with power supplies and power cycling or “sleep”-control electronics. The latter enables autonomous operation, independent of commands from the rover. RAD is a highly capable and highly configurable instrument that paves the way for future compact energetic particle detectors in space.  相似文献   

12.
THE DIGITAL WAVE-PROCESSING EXPERIMENT ON CLUSTER   总被引:1,自引:0,他引:1  
The wide variety of geophysical plasmas that will be investigated by the Cluster mission contain waves with a frequency range from DC to over 100 kHz with both magnetic and electric components. The characteristic duration of these waves extends from a few milliseconds to minutes and a dynamic range of over 90 dB is desired. All of these factors make it essential that the on-board control system for the Wave-Experiment Consortium (WEC) instruments be flexible so as to make effective use of the limited spacecraft resources of power and telemetry-information bandwidth. The Digital Wave Processing Experiment, (DWP), will be flown on Cluster satellites as a component of the WEC. DWP will coordinate WEC measurements as well as perform particle correlations in order to permit the direct study of wave/particle interactions. The DWP instrument employs a novel architecture based on the use of transputers with parallel processing and re-allocatable tasks to provide a high-reliability system. Members of the DWP team are also providing sophisticated electrical ground support equipment, for use during development and testing by the WEC. This is described further in Pedersen et al. (this issue).  相似文献   

13.
In this brief review, we summarize the current state of knowledge of solar energetic particles. This includes energetic particles contained within the site of solar flares that are responsible for X-ray, γ-ray and neutron emission and particles accelerated at high coronal altitudes and in interplanetary space by travelling disturbances such as coronal mass ejections. Special emphasis is placed on those particles directly or indirectly associated with neutron monitor signals. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
The magnetic field experiment on WIND will provide data for studies of a broad range of scales of structures and fluctuation characteristics of the interplanetary magnetic field throughout the mission, and, where appropriate, relate them to the statics and dynamics of the magnetosphere. The basic instrument of the Magnetic Field Investigation (MFI) is a boom-mounted dual triaxial fluxgate magnetometer and associated electronics. The dual configuration provides redundancy and also permits accurate removal of the dipolar portion of the spacecraft magnetic field. The instrument provides (1) near real-time data at nominally one vector per 92 s as key parameter data for broad dissemination, (2) rapid data at 10.9 vectors s–1 for standard analysis, and (3) occasionally, snapshot (SS) memory data and Fast Fourier Transform data (FFT), both based on 44 vectors s–1. These measurements will be precise (0.025%), accurate, ultra-sensitive (0.008 nT/step quantization), and where the sensor noise level is <0.006 nT r.m.s. for 0–10 Hz. The digital processing unit utilizes a 12-bit microprocessor controlled analogue-to-digital converter. The instrument features a very wide dynamic range of measurement capability, from ±4 nT up to ±65 536 nT per axis in eight discrete ranges. (The upper range permits complete testing in the Earth's field.) In the FTT mode power spectral density elements are transmitted to the ground as fast as once every 23 s (high rate), and 2.7 min of SS memory time series data, triggered automatically by pre-set command, requires typically about 5.1 hours for transmission. Standard data products are expected to be the following vector field averages: 0.0227-s (detail data from SS), 0.092 s (detail in standard mode), 3 s, 1 min, and 1 hour, in both GSE and GSM coordinates, as well as the FFT spectral elements. As has been our team's tradition, high instrument reliability is obtained by the use of fully redundant systems and extremely conservative designs. We plan studies of the solar wind: (1) as a collisionless plasma laboratory, at all time scales, macro, meso and micro, but concentrating on the kinetic scale, the highest time resolution of the instrument (=0.022 s), (2) as a consequence of solar energy and mass output, (3) as an external source of plasma that can couple mass, momentum, and energy to the Earth's magnetosphere, and (4) as it is modified as a consequence of its imbedded field interacting with the moon. Since the GEOTAIL Inboard Magnetometer (GIM), which is similar to the MFI instrument, was developed by members of our team, we provide a brief discussion of GIM related science objectives, along with MFI related science goals.  相似文献   

15.
Microscope Instrument Development,Lessons for GOCE   总被引:2,自引:0,他引:2  
Touboul  Pierre 《Space Science Reviews》2003,108(1-2):393-408
Two space missions are presently under development with payload based on ultra-sensitive electrostatic accelerometers. The GOCE mission takes advantage of a three axis gradiometer accommodated in a very stable thermal case on board a drag-free satellite orbiting at a very low altitude of 250 km. This ESA mission will perform the very highly accurate mapping of the Earth gravity field with a geographical resolution of 100 km. The MICROSCOPE mission is devoted to the test of the “Universality of free fall” in view of the verification of the Einstein Equivalence Principle (EP) and of the search of a new interaction. The MICROSCOPE instrument is composed of two pairs of differential electrostatic accelerometers and the accelerometer proof-masses are the bodies of the EP test. The satellite is also a drag-free satellite exhibiting a fine attitude control and in a certain way, each differential accelerometer is a one axis gradiometer with an arm of quite null length. The development of this instrument much interests the definition and the evaluation of the sensor cores of the gradiometer. The in flight calibration process of both instruments is also very similar. Lessons form these parallel developments are presented. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
The SEIS (Seismic Experiment for Interior Structures) instrument onboard the InSight mission to Mars is the critical instrument for determining the interior structure of Mars, the current level of tectonic activity and the meteorite flux. Meeting the performance requirements of the SEIS instrument is vital to successfully achieve these mission objectives. Here we analyse in-situ wind measurements from previous Mars space missions to understand the wind environment that we are likely to encounter on Mars, and then we use an elastic ground deformation model to evaluate the mechanical noise contributions on the SEIS instrument due to the interaction between the Martian winds and the InSight lander. Lander mechanical noise maps that will be used to select the best deployment site for SEIS once the InSight lander arrives on Mars are also presented. We find the lander mechanical noise may be a detectable signal on the InSight seismometers. However, for the baseline SEIS deployment position, the noise is expected to be below the total noise requirement \(>97~\%\) of the time and is, therefore, not expected to endanger the InSight mission objectives.  相似文献   

17.
The VIRTIS (Visual IR Thermal Imaging Spectrometer) experiment has been one of the most successful experiments built in Europe for Planetary Exploration. VIRTIS, developed in cooperation among Italy, France and Germany, has been already selected as a key experiment for 3 planetary missions: the ESA-Rosetta and Venus Express and NASA-Dawn. VIRTIS on board Rosetta and Venus Express are already producing high quality data: as far as Rosetta is concerned, the Earth-Moon system has been successfully observed during the Earth Swing-By manouver (March 2005) and furthermore, VIRTIS will collect data when Rosetta flies by Mars in February 2007 at a distance of about 200 kilometres from the planet. Data from the Rosetta mission will result in a comparison – using the same combination of sophisticated experiments – of targets that are poorly differentiated and are representative of the composition of different environment of the primordial solar system. Comets and asteroids, in fact, are in close relationship with the planetesimals, which formed from the solar nebula 4.6 billion years ago. The Rosetta mission payload is designed to obtain this information combining in situ analysis of comet material, obtained by the small lander Philae, and by a long lasting and detailed remote sensing of the comet, obtained by instrument on board the orbiting Spacecraft. The combination of remote sensing and in situ measurements will increase the scientific return of the mission. In fact, the “in situ” measurements will provide “ground-truth” for the remote sensing information, and, in turn, the locally collected data will be interpreted in the appropriate context provided by the remote sensing investigation. VIRTIS is part of the scientific payload of the Rosetta Orbiter and will detect and characterise the evolution of specific signatures – such as the typical spectral bands of minerals and molecules – arising from surface components and from materials dispersed in the coma. The identification of spectral features is a primary goal of the Rosetta mission as it will allow identification of the nature of the main constituent of the comets. Moreover, the surface thermal evolution during comet approach to sun will be also studied.  相似文献   

18.
Stone  E.C.  Cohen  C.M.S.  Cook  W.R.  Cummings  A.C.  Gauld  B.  Kecman  B.  Leske  R.A.  Mewaldt  R.A.  Thayer  M.R.  Dougherty  B.L.  Grumm  R.L.  Milliken  B.D.  Radocinski  R.G.  Wiedenbeck  M.E.  Christian  E.R.  Shuman  S.  von Rosenvinge  T.T. 《Space Science Reviews》1998,86(1-4):357-408
The Solar Isotope Spectrometer (SIS), one of nine instruments on the Advanced Composition Explorer (ACE), is designed to provide high- resolution measurements of the isotopic composition of energetic nuclei from He to Zn (Z=2 to 30) over the energy range from ∼10 to ∼100 MeV nucl−1. During large solar events SIS will measure the isotopic abundances of solar energetic particles to determine directly the composition of the solar corona and to study particle acceleration processes. During solar quiet times SIS will measure the isotopes of low-energy cosmic rays from the Galaxy and isotopes of the anomalous cosmic-ray component, which originates in the nearby interstellar medium. SIS has two telescopes composed of silicon solid-state detectors that provide measurements of the nuclear charge, mass, and kinetic energy of incident nuclei. Within each telescope, particle trajectories are measured with a pair of two-dimensional silicon-strip detectors instrumented with custom, very large-scale integrated (VLSI) electronics to provide both position and energy-loss measurements. SIS was especially designed to achieve excellent mass resolution under the extreme, high flux conditions encountered in large solar particle events. It provides a geometry factor of ∼40 cm2 sr, significantly greater than earlier solar particle isotope spectrometers. A microprocessor controls the instrument operation, sorts events into prioritized buffers on the basis of their charge, range, angle of incidence, and quality of trajectory determination, and formats data for readout by the spacecraft. This paper describes the design and operation of SIS and the scientific objectives that the instrument will address. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Conclusions Passive observation of the naturally occurring γ-ray and X-ray from the planets is potentially an important technique for determining their gross chemical composition and on the basis of natural γ-radiation determining if the planetary surface is composed of differential material. If the planet is not covered by a thick atmosphere then it is possible to map the distribution of the most abundant elements on a scale of spatial resolution that is of the order of the altitude at which the observations are made. Initial observations carried out from lunar orbit have shown that the flux levels are approximately as expected and that the lunar surface is not characterized by any widespread distribution of acidic rocks in the region observed by the Luna 10 spacecraft.  相似文献   

20.
It is commonly accepted that candidates for very high energy -ray sources are neutron stars, binary systems, black holes etc. Close binary systems containing a normal hot star and a neutron star (or a black hole) form an important class of very high energy -ray sources. Such systems are variable in any region of the electromagnetic spectrum and they enable us to study various stages of stellar evolution, accretion processes, mechanisms of particle acceleration, etc. Phenomena connected with this class of very high energy -ray sources are discussed. Particular emphasis has been placed on the TeV energy region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号