首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 179 毫秒
1.
This paper will describe the biomedical support aspects of humans in space with respect to the vestibular system. The vestibular system is thought to be the primary sensory system involved in the short-term effects of space motion sickness although there is increasing evidence that many factors play a role in this complex set of symptoms. There is the possibility that an individual's inner sense of orientation may be strongly coupled with the susceptibility to space motion sickness. A variety of suggested countermeasures for space motion sickness will be described. Although there are no known ground-based tests that can predict space motion sickness, the search should go on. The long term effects of the vestibular system in weightlessness are still relatively unknown. Some preliminary data has shown that the otoconia are irregular in size and distribution following extended periods of weightlessness. The ramifications of this data are not yet known and because the data was obtained on lower order animals, definitive studies and results must wait until the space station era when higher primates can be studied for long durations. This leads us to artificial gravity, the last topic of this paper. The vestibular system is intimately tied to this question since it has been shown on Earth that exposure to a slow rotating room causes motion sickness for some period of time before adaptation occurs. If the artificial gravity is intermittent, will this mean that people will get sick every time they experience it? The data from many astronauts returning to Earth indicates that a variety of sensory illusions are present, especially immediately upon return to a 1-g environment. Oscillopsia or apparent motion of the visual surround upon head motion along with inappropriate eye motions for a given head motion, all indicate that there is much to be studied yet about the vestibular and CNS systems reaction to a sudden application of a steady state acceleration field like 1-g. From the above information it is obvious that the vestibular system does have unique requirements when it comes to the biomedical support of space flight. This is not to say that other areas such as cardiovascular, musculo-skeletal, immunological and hematological systems do not have their own unique requirements but that possible solutions to one system can provide continuing problems to another system. For example, artificial gravity might be helpful for long term stabilization of bone demineralization or cardiovascular deconditioning but might introduce a new set of problems in orientation, vestibular conflict and just plain body motion in a rotating space vehicle.  相似文献   

2.
An analysis of observations and investigations carried out in space flight has shown that some cosmonauts and astronauts have experienced vestibular disorders during the transition to weightlessness. Vestibular-sensory disorders include: Spatial illusions (the feelings of falling down, being in an upside-down position, the sensations of rotation of the craft or the body) and vertigo occurring during the onset of the orbital flight and head movements; Feelings, similar to those experienced in response to Coriolis accelerations on the Earth, which occasionally develop in weightlessness during the spacecraft rotation upon abrupt head and body movements and restrained feet; Feelings "of the load on the vestibular analyser which is unlike any Earth-bound effects" upon abrupt head movements during the first hours of an orbital flight and "a prolonged movement" during the switch-off of thrusters in weightlessness. Vestibular-vegetative disorders comprise a complex of symptoms similar to those of motion sickness: loss of appetite, stomach awareness (12%), hypersalination, nausea (9.6%) and vomiting (4.8%). Soviet studies suggest that the vestibular tolerance to the flight effects depends on the natural stability and training to the cumulative effect of adequate vestibular stimuli. This has been used in the development of the system of vestibular selection. Changes in the vestibular function seem to play the major role in the development of motion sickness in weightlessness, extra-labyrinthine factors being contributory. The current hypotheses have not yet been adequately confirmed in experiments. A detailed physiological analysis allows the conclusion that the decisive factor in the development of motion sickness may be the disturbance of the function of analysers responsible for spatial orientation which take the form of sensory conflicts as well as an altered reactivity of the organism due to the hemodynamic rearrangement.  相似文献   

3.
Summary of experiments onboard Soviet biosatellites.   总被引:1,自引:0,他引:1  
Physiological, morphological and biochemical studies of mammals flown onboard biosatellites of the series Cosmos revealed changes in their cardiovascular, musculoskeletal, endocrine and vestibular systems. Space flight resulted in moderate stress reactions, intralabyrinthine conflict information during movements and changes in fluid-electrolyte metabolism. Exposure to artificial gravity (1 g) decreased the level of myocardial, musculoskeletal and excretory changes, but disturbed the function of equilibrium. Studies with combined weightlessness and ionizing radiation demonstrated that weightlessness did not produce a significant modifying effect on radiation damage and postradiation recovery. Consistent changes in certain systems of animals and humans in weightlessness confirm the practical importance of biosatellite studies, which also contribute to the solution of general biology, problems associated with gravity effects on life processes.  相似文献   

4.
In space, the weightless environment provides a different stimulus to the otolith organs of the vestibular system, and the resulting signals no longer correspond with the visual and other sensory signals sent to the brain. This signal conflict causes disorientation. To study this and also to understand the vestibular adaptation to weightlessness, DARA has developed scientific equipment for vestibular and visuo-oculomotoric investigations. Especially, two video-oculography systems (monocular--VOG--and binocular--BIVOG, respectively) as well as stimuli such as an optokinetic stimulation device have successfully been employed onboard MIR in the frame of national and European missions since 1992. The monocular VOG was used by Klaus Flade during the MIR '92 mission, by Victor Polyakov during his record 15 months stay onboard MIR in 1993/94 as well as by Ulf Merbold during EUROMIR '94. The binocular version was used by Thomas Reiter and Sergej Avdeyev during the 6 months EUROMIR '95 mission. PIs of the various experiments include H. Scherer and A. Clarke (FU Berlin), M. Dieterichs and S. Krafczyk (LMU Munchen) from Germany as well as C.H. Markham and S.G. Diamond from the United States. Video-Oculography (VOG) is a technique for examining the function of the human balance system located in the inner ear (vestibular system) and the visio-oculomotor interactions of the vestibular organ. The human eye movements are measured, recorded and evaluated by state-of-the-art video techniques. The method was first conceived and designed at the Vestibular Research Laboratory of the ENT Clinic in Steglitz, FU Berlin (A. Clarke, H. Scherer). Kayser-Threde developed, manufactured and tested the facilities for space application under contract to DARA. Evaluation software was first provided by the ENT Clinic, Berlin, later by our subcontractor Sensomotoric Instruments (SMI), Teltow. Optokinetic hardware to support visuo-oculomotoric investigations, has been shipped to MIR for EUROMIR '95 and has successfully been used in conjunction with VOG by ESA astronaut Thomas Reiter. Most recently, BIVOG aboard MIR will be reused in the frame of German/Russian joint experiment sessions employing two Russian cosmonauts from August 1997 to January 1998.  相似文献   

5.
We evaluated the influence of prolonged weightlessness on the performance of three cosmonauts to bilateral symmetry detection in the course of a 15-day-long Russian-French mission CASSIOPEE 96 aboard the MIR station. We tested the influence of weightlessness on subjects' performance as a function of the retinal orientation of axis of symmetry. as a function of type of stimuli (closed versus multi-elements shapes) and as a function of visual field presentation (at fixation, left visual field. right visual field). The results indicate firstly a difference between presentation at fixation versus away of fixation. Away of fixation, no effect of microgravity on performance was shown. A hypothesis of hemispheric specialization for symmetry detection was not supported as well. At fixation, an effect of micro-gravity was shown and more interestingly, the effect was quite different as a function of type of shapes used. suggesting that symmetry detection is a multiple-stage process.  相似文献   

6.
Homick JL 《Acta Astronautica》1979,6(10):1259-1272
Space motion sickness, presumably triggered by sudden entry into a weightless environment, occurred with unexpected frequency and severity among astronauts who flew the Skylab missions. Recovery from symptoms was complete within 3-5 days, and as revealed by the Skylab M131 Human Vestibular Function Experiment, all crewmembers were immune to experimentally induced motion sickness after mission day 8. This syndrome has been recognized as a possible threat to the early mission well-being and operational efficiency of at least some individuals who will fly space missions in the future. The causes of space motion sickness are not clearly understood, nor have satisfactory methods been identified to date for its prediction, prevention and treatment. In order to minimize the potential impact of this syndrome on Space Shuttle crew operations the National Aeronautics and Space Administration has organized a broad program of inter-disciplinary research involving a large number of scientists in the United States. Current research on the etiology of space motion sickness is based to a large extent on the so called sensory conflict theory. Investigations of the behavioral and neurophysiological consequences of intralabyrinthine, as well as intermodality sensory conflict are being performed. The work in this area is being influenced by the presumed alterations that occur in otolith behavior in weightlessness. In addition to sensory conflict, the possible relationship between observed cephalad shifts of body fluids in weightlessness and space motion sickness is being investigated. Research to date has failed to support the fluid shift theory. Research underway to identify reliable test methods for the prediction of susceptibility to space motion sickness on an individual basis includes attempts to (a) correlate susceptibility in different provocative environments; (b) correlate susceptibility with vestibular and non-vestibular response parameters, the latter including behavioral, hemodynamic and biochemical factors and (c) correlate susceptibility with rate of acquisition and length of retention of sensory adaptation. Controlled studies are also being performed during parabolic flight as a means of attempting to validate predictive tests for susceptibility to this syndrome. Research to develop new or improved countermeasures for space motion sickness is underway in two primary areas. One of these involves anti-motion sickness drugs. Significant achievements have been realized with regard to the identification of new highly efficacious drug combinations, dose levels and routes of administration. Although pronounced individual variations must be accounted for in selecting the optimum drug and dose level, combinations of promethazine plus ephedrine or scopolamine plus dexidrine are presently the drugs of choice. Work is also underway to identify side effects associated with anti-motion sickness drug use and to identify new drugs which may selectively modify activity in central neural pathways involved in motion sickness. In addition to research on drugs, efforts are being made to develop practical vestibular training methods. Variables which influence rate of acquisition of adaptation, length of retention of adaptation and transfer of protective adaptation to new environments are being evaluated. Also, included in this area is the use of biofeedback and autogenic therapy to train individuals to regulate autonomic responses associated with motion sickness. While valuable new knowledge is expected to evolve from these combined research programs, it is concluded that the final validation of predictive tests and countermeasures will require a series of controlled space flight experiments.  相似文献   

7.
At present the main trends among the most important problems of otorhinolaryngology in space medicine have become defined as vestibulology, audiology and clinical aspects (prophylaxis, diagnosis and treatment of ENT diseases in flight). The principal result of recent vestibular studies has probably been the establishment of an apparent relationship between the resistance of the vestibular system to adequate ground-based stimulation and tolerance to space flight. The findings of the studies formed the basis for the development of a new system of vestibular selection, as well as demonstrated the usefulness of special vestibular training of astronauts by active and passive methods. In audiology certain urgency is acquired by the problem of noise limitation in space cabins and auditory system reliability prediction for preserving a high work capability in crew members. The hemodynamic changes in weightlessness, as well as the possibility for allergic lesions, create conditions for distorted course of the ENT diseases and vaso-motor disorders. The prophylaxis of aspirations also deserves close attention since the possibilities of their onset increase in weightlessness. The rendering of immediate, timely aid will depend not only on the presence of the necessary medical equipment but also on the ability of the crew members to render the appropriate otorhinolaryngological aid.  相似文献   

8.
The present paper reports a kinetic analysis of changes of some physiological parameters, obtained from international literature, after changes in gravitational environment. The overall phenomenology of the adaptation to weightlessness is characterized by a rapid process followed by a slow one. The two processes show half time values differing by about five times. Also in the case of readaptation to gravity, after recovery on the Earth, two well resolved processes, showing different half time values, are observed. It is of interest to notice that the rate of response to weightlessness is lower than that to gravity. Of course, the half time values observed depend on the different physiological parameters considered. In any case, the experimental data suggest a general trend of many adaptive changes, that may all be described by a simple mathematical model.  相似文献   

9.
The Cosmos-782 flight from 25 November to 15 December 1975, carried biological experiments designed to study the effects of weightlessness on insects and fish and on gravitropism and growth in several seed varieties. Investigations carried out on Drosophila melanogaster measured the frequency of recessive lethal mutations and the change in genetic distances in the sex chromosome. The study of Fundulus heteroclitus eggs and fry compared the effects of weightlessness and artificial gravity. Plants experiments studied spatial orientation of over and underground organs of Pinus silvestris and Crepis capillaris seeds. Other investigations used Phycomyces blakesleanus to compare spatial orientation and growth and development in weightlessness and artificial gravity.  相似文献   

10.
The possibility of the uncontrolled increase of the altitude of an almost circular satellite orbit by the force of the light pressure is investigated. The satellite is equipped with a damper and a system of mirrors (solar batteries can serve as such a system). The flight of the satellite takes place in the mode of a single-axis gravitational orientation, the axis of its minimum principal central moment of inertia makes a small angle with the local vertical and the motion of the satellite around this axis constitutes forced oscillations under the impact of the moment of force of the light pressure. The form of the oscillations and the initial orbit are chosen so that the transverse component of the force of the light pressure acting upon the satellite be positive and the semimajor axis of the orbit would continuously increase. As this takes place, the orbit remains almost circular. We investigate the evolution of the orbit over an extended time interval by the method which employs separate integration of the equations of the orbital and rotational motions of the satellite. The method includes outer and inner cycles. The outer cycle involves the numerical integration of the averaged equations of motion of the satellite center of mass. The inner cycle serves to calculate the right-hand sides of these equations. It amounts to constructing an asymptotically stable periodic motion of the satellite in the mode of a single-axis gravitational orientation for current values of the orbit elements and to averaging the equations of the orbital motion along it. It is demonstrated that the monotone increase of the semimajor axis takes place during the first 15 years of motion. In actuality, the semimajor axis oscillates with a period of about 60 years. The eccentricity and inclination of the orbit remain close to their initial values.  相似文献   

11.
The purpose of the present experiment was to study the way in which the CNS represents gravitational force during vertical arm pointing movements. Movements in upward and downward directions were executed by two cosmonauts in normal-gravity and weightlessness. Analyses focused upon finger kinematics in the sagittal plane. In normal-gravity, downward direction movements showed smaller curvatures and greater relative times to peak velocity (AT/MT) when compared with upward direction movements. Data from the weightlessness experiments showed that whilst downward movements decreased their curvature during space flight, curvatures of upward movements changed slightly. Furthermore, AT/MT was modified during the first days in micro-gravity for both directions, recovering, however, to pre-flight values after 18 days in space. Results from the present study, provide evidence that gravitational force is centrally treated constituting an important component of the motor plan for vertical arm movements.  相似文献   

12.
Quasi-static microaccelerations are estimated for a satellite specially designed to perform space experiments in the field of microgravity. Three modes of attitude motion of the spacecraft are considered: passive gravitational orientation, orbital orientation, and semi-passive gravitational orientation. In these modes the lengthwise axis of the satellite is directed along the local vertical, while solar arrays lie in the orbit plane. The second and third modes are maintained using electromechanical executive devices: flywheel engines or gyrodynes. Estimations of residual microaccelerations are performed with the help of mathematical modeling of satellite’s attitude motion under the action of gravitational and aerodynamic moments, as well as the moment produced by the gyro system. It is demonstrated that all modes ensure rather low level of quasi-static microaccelerations on the satellite and provide for a fairly narrow region of variation for the vector of residual microacceleration. The semi-passive gravitational orientation ensures also a limited proper angular momentum of the gyro system.  相似文献   

13.
The results of biomedical investigations carried out in the U.S.S.R. manned space missions are discussed. Their basic result is well-documented evidence that man can perform space flights of long duration. The investigations have demonstrated no direct correlation between inflight or postflight physiological reactions of crewmembers and flight duration. In all likelihood, this can be attributed to the fact that special exercises done inflight efficiently prevented adverse effects of weightlessness. However, human reactions to weightlessness need further study. They include negative calcium balance and anemia as well as vestibulo-autonomic disorders shown by crewmembers at early stages of weightlessness. Attention should be given to psychological, social-psychological and ethical problems that may also limit further increase in flight duration.  相似文献   

14.
《Acta Astronautica》2013,82(2):635-644
The Inner Formation Flying System (IFFS) consisting of an outer satellite and an inner satellite which is a solid sphere proof mass freely flying in the shield cavity can construct a pure gravity orbit to precisely measure the earth gravity field. The gravitational attraction on the inner satellite due to the outer satellite is a significant disturbance source to the pure gravity orbit and is required to be limited to 10−11 m s−2 order. However, the gravitational disturbance force was on 10−9 m s−2 order actually and must be reduced by dedicated compensation mass blocks. The region of relative motion of the inner satellite about its nominal position is within 1 cm in dimension, which raises the complexity of the compensation blocks design. The iterative design strategy of the compensation blocks based on reducing the gravitational attraction at the nominal position of the inner satellite is presented, aiming to guarantee the gravitational force in the relative motion region within requirements after the compensation. The compensation blocks are designed according to the current status of IFFS, and the gravitational disturbance force in the region is reduced to 10−11 ms−2 order with minimized adding mass.  相似文献   

15.
The functional approach to studying human motor systems attempts to give a better understanding of the processes behind planning movements and their coordinated performance by relying on weightlessness as a particularly enlightening experimental condition. Indeed, quantitative monitoring of sensorimotor adaptation of subjects exposed to weightlessness outlines the functional role of gravity in motor and postural organization. The recent accessibility of the MIR Space Station has allowed for the first time experimental quantitative kinematic analysis of long-term sensorimotor and postural adaptation to the weightless environment though opto-electronic techniques. In the frame of the EUROMIR'95 Mission, two protocols of voluntary posture perturbation (erect posture, EP; forward trunk bending, FTB) were carried out during four months of microgravity exposure. Results show that postural strategies for quasistatic body orientation in weightlessness are based on the alignment of geometrical body axes (head and trunk) along external references. A proper whole body positioning appears to be recovered only after months of microgravity exposure. By contrast, typically, terrestrial strategies of co-ordination between movement and posture are promptly restored and used when performing motor activities in the weightless environment. This result is explained under the assumption that there may be different sensorimotor integration processes for static and dynamic postural function and that the organisation of coordinated movement might rely stably on egocentric references and kinematics synergies for motor control.  相似文献   

16.
Influence of the gravitational vertical on geometric visual illusions   总被引:1,自引:0,他引:1  
Clément G  Eckardt J 《Acta Astronautica》2005,56(9-12):911-917
The occurrence of geometric orientation illusions and the perception of ambiguous figures were analyzed in 24 subjects during static body tilt relative to gravity on Earth. Results showed that illusions such as the Rock's diamond/square, the Ponzo illusion, and orientation contrast illusions occurred less frequently, and that depth reversal of ambiguous figures took more time when subjects were lying on their side or supine compared to upright, thus suggesting that the gravitational reference plays a significant role in these “visual” illusions. The structure of images, our representation of the environment, and orientation relative to gravity are all integral parts in interpreting visual images. In a weightless environment where no gravitational reference can be used, it is expected that similar alterations in visual perception will occur.  相似文献   

17.
Experimental observations of adaptation processes of the motor control system to altered gravity conditions can provide useful elements to the investigations on the mechanisms underlying motor control of human subject. The microgravity environment obtained on orbital flights represents a unique experimental condition for the monitoring of motor adaptation. The research in motor control exploits the changes caused by microgravity on the overall sensorimotor process, due to the impairment of the sensory systems whose function depends upon the presence of the gravity vector. Motor control in microgravity has been investigated during parabolic flights and short-term space missions, in particular for analysis of movement-posture co-ordination when equilibrium is no longer a constraint. Analysis of long-term adaptation would also be very interesting, calling for long-term body motion observations during the process of complete motor adaptation to the weightlessness environment. ELITE-S2 is an innovative facility for quantitative human movement analysis in weightless conditions onboard the International Space Station (ISS). ELITE-S2 is being developed by the Italian Space Agency, ASI is to be delivering the flight models to NASA to be included in an expressed rack in US Lab Module in February 2004. First mission is currently planned for summer 2004 (increment 10 ULF 2 ISS).  相似文献   

18.
Organisms use gravity for spatial orientation, and differentiation into species during evolution follows geological processes which are caused by gravity. On the other hand, the task of most organismic functions which have or may have a relation to gravity is to compensate gravity. Furthermore, today it is very obvious that organisms do not disintegrate under the conditions of weightlessness, at least for the currently tested durations. These previous statements indicate a large field of still unknown regulation and adaptation mechanisms. Experiments to simulate weightlessness on the fast clinostat and with hyper-g show a highly developed ability of the genetic chain and of differentiating cells in being autonomous against mechanical stresses caused by outer accelerations. Nevertheless, different strong and slight changes of different tested end points were found. The question remains if the cells react actively or only passively.  相似文献   

19.
Chelnokov  Yu. N. 《Cosmic Research》2001,39(5):470-484
The problem of optimal control is considered for the motion of the center of mass of a spacecraft in a central Newtonian gravitational field. For solving the problem, two variants of the equations of motion for the spacecraft center of mass are used, written in rotating coordinate systems. Both the variants have a quaternion variable among the phase variables. In the first variant this variable characterizes the orientation of an instantaneous orbit of the spacecraft and (simultaneously) the spacecraft location in this orbit, while in the second variant only the instantaneous orbit orientation is specified by it. The suggested equations are convenient in the respect that they allow the general three-dimensional problem of optimal control by the motion of the spacecraft center of mass to be considered as a composition of two interrelated problems. In the first variant these problems are (1) the problem of control of the shape and size of the spacecraft orbit and (2) the problem of control of the orientation of a spacecraft orbit and the spacecraft location in this orbit. The second variant treats (1) the problem of control of the shape and size of the spacecraft orbit and the orbit location of the spacecraft and (2) the problem of control of the orientation of the spacecraft orbit. The use of quaternion variables makes this consideration most efficient. The problem of optimal control is solved on the basis of the maximum principle. Several first integrals of the systems of equations of the boundary value problems of the maximum principle are found. Transformations are suggested that reduce the dimensions of the systems of differential equations of boundary value problems (without complicating them). Geometrical interpretations are given to the transformations and first integrals. The relation of the vectorial first integral of one of the derived systems of equations (which is an analog of the well-known vectorial first integral of the studied problem of optimal control) with the found quaternion first integral is considered. In this paper, which is the first part of the work, we consider the models of motion of the spacecraft center of mass that employ quaternion variables. The problem of optimal control by the motion of the spacecraft center of mass is investigated on the basis of the first variant of equations of motion. An example of a numerical solution of the problem is given.  相似文献   

20.
The system of countermeasures used by Russian cosmonauts in space flights on board of International Space Station (ISS) was based on the developed and tested in flights on board of Russian space stations. It included as primary components: physical methods aimed to maintain the distribution of fluids at levels close to those experienced on Earth; physical exercises and loading suits aimed to load the musculoskeletal and the cardiovascular systems; measures that prevent the loss of fluids, mainly, water-salt additives which aid to maintain orthostatic tolerance and endurance to gravitational overloads during the return to Earth; well-balanced diet and medications directed to correct possible negative reactions of the body to weightlessness. Fulfillment of countermeasure's protocols inflight was thoroughly controlled. Efficacy of countermeasures used were assessed both in- and postflight. The results of studies showed that degrees of alterations recorded in different physiological systems after ISS space flights in Russian cosmonauts were significantly higher than those recorded after flights on the Russian space stations. This phenomenon was caused by the failure of the ISS crews to execute fully the prescribed countermeasures' protocols which was as a rule excused by technical imperfectness of exercise facilities, treadmill TVIS particularly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号