首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 174 毫秒
1.
为了深入研究介质阻挡放电等离子体流动控制机理,采用数值仿真方法研究了激励器定常、非定常工作模式下,等离子体流动控制对边界层影响,并分析了不同模式控制流动分离的能力。仿真结果表明:激励器定常工作时,在壁面形成射流,非定常工作时,则在激励器下游诱导产生了一系列旋涡,同时旋涡向下游的运动加剧主流与边界层混合;不同工作模式,等离子体激励都能有效控制流动分离;非定常激励时,脉冲占空比为0.6时仍能有效抑制流动分离,控制效率更高。  相似文献   

2.
等离子体激励控制激波与边界层干扰流动分离数值研究   总被引:2,自引:1,他引:2  
针对高超声速进气道激波与边界层干扰流动分离控制问题,提出了一种低功率重频非定常激励方式,并基于雷诺平均Navier-Stokes(N-S)方程,从唯象学的角度出发,将等离子激励简化为功率密度源项,对比研究了定常与低功率重频非定常等离子体气动激励的作用机理与控制效果。结果表明:定常激励的能量沉积作用对于激波控制非常有效,并可诱导出斜激波,但是对于流动分离控制而言,其能量沉积显然过于强大,反而会使流动分离更加严重,无法满足控制要求;当采用低功率重频非定常激励方式时,对于不同功率密度的情况均存在最佳激励时长与频率,当功率密度为5.0×109W/m3时,最大射流速度可以达到895m/s,并且可以在一定程度上减弱激波与边界层干扰流动分离。   相似文献   

3.
低速翼型分离流动的等离子体主动控制研究   总被引:3,自引:0,他引:3  
为了研究等离子体激励器的放电形式及其诱导气流的规律,以及翼型迎角、自由来流速度分别对翼型流动分离抑制效果的影响。在低速、低雷诺数条件下利用介质阻挡放电等离子体激励器对NACA0015翼型进行了主动流动控制研究。结果表明:介质阻挡放电的形式为丝状放电;等离子体激励器诱导气流的方向由裸露电极指向覆盖电极,由电极的布置方式决定,与接线方式无关;当来流速度为25m/s,雷诺数为2.03×10^5时,等离子体气动激励可以有效地抑制翼型吸力面的流动分离,翼型最大升力系数增大约为9.7%,翼型l临界失速迎角由17.5°增大到20.5°;翼型失速延迟的真正原因并非单纯的气流加速;等离子体激励器的作用效果随着来流速度的提高而减弱,研究非定常激励或等离子体激励器与流场之间的耦合效应,也许更加具有潜力。  相似文献   

4.
为了提高等离子体的流动控制能力,在常规大气环境,来流风速分别为20m/s、30m/s、40m/s条件下进行了介质阻挡放电抑制NACA0015翼型流动分离实验研究。结果表明:等离子体能有效的抑制分离,实现增升减阻,但随着来流风速增加,有效控制的起始和终止攻角均变大,攻角区域却逐渐变小;可以通过在翼型分离点附近布置等离子体激励器,在允许的范围内尽量提高输入功率,使控制效果达到最佳。  相似文献   

5.
纳秒等离子体激励控制翼型流动分离机理研究   总被引:3,自引:0,他引:3       下载免费PDF全文
为研究纳秒介质阻挡放电(NSDBD)等离子体控制翼型流动分离的物理机理,采用已建立的NSDBD唯象学模型耦合非定常Navier-Stokes方程模拟纳秒等离子体对流场的作用。使用非定常雷诺平均NavierStokes方程(URANS)和大涡模拟(LES)两种求解方法,研究纳秒等离子体激励对NACA0015翼型流动分离控制。结果表明:NSDBD等离子体激励促使边界层提前转捩,转捩对控制流动分离起重要作用;NSDBD激励开始时在翼型前缘形成展向涡,展向涡促使分离剪切层失稳并最终进入尾迹,展向涡贴近壁面运动,将外区的高能气流带入近壁区,使上翼面流场结构发生变化,然后翼型前缘流动提前转捩促使流动经过一个小层流分离泡后发生湍流再附,最终在上翼面形成稳定的附着流动。  相似文献   

6.
牛中国  赵光银  梁华  柳平 《航空学报》2019,40(3):22201-022201
现代战机采用较多的三角翼,在大迎角绕流时存在前缘涡破裂等气动问题。作为新型主动流动控制技术,等离子体激励频带宽、响应快、结构简单、便于闭环控制,在解决三角翼气动问题上具有潜力。回顾了介质阻挡放电(DBD)等离子体气动激励的基本原理,及其用于三角翼前缘涡控制的研究进展。从来流条件、几何构型、激励参数等方面分析了DBD等离子体激励对流动控制效果的影响规律;结合不同激励频率下流场演化特性,分析了流动控制机理。最后,从理论研究和工程应用的角度,对三角翼前缘涡控制的发展进行总结展望。  相似文献   

7.
在轴流压气机等离子体扩稳研究中,针对单转子压气机流动控制的研究较多,而针对单级环境下静叶流动控制的研究却很少.采用静叶轮毂轴向等离子体激励方式,通过数值模拟方法研究单级环境下静叶流场特性,揭示轴流压气机静叶等离子体流动控制扩稳机理.结果表明:等离子体激励器的轴向位置对单级轴流压气机的扩稳效果影响显著,越靠近叶片前缘,扩稳效果越好;布置在静叶通道后半部的等离子体激励器无法提高压气机的稳定性,而在静叶前缘施加轴向等离子体激励时,近轮毂区气流被诱导加速,主流的轴向速度提高,有效抑制了静叶近轮毂区吸力面的流动分离,静叶近轮毂区的堵塞减小,使得单级轴流压气机的稳定性提高.  相似文献   

8.
为了探究介质阻挡放电(dielectric barrier discharge, DBD)等离子体气动激励对平板湍流边界层的减阻情况,在控制来流速度为10.7 m/s的低速风洞中进行等离子体平板湍流边界层减阻控制实验。本实验重点研究了不同激励频率对湍流边界层的减阻控制效果,使用热线风速仪系统采集流向速度信号,获得边界层平均速度分布和脉动速度分布。对实验结果进行对比分析发现,在施加不同频率的等离子体激励之后,边界层内对数区速度明显减小;随着激励频率的增加,局部减阻率呈现出先增大后减小的趋势,在激励频率为200 Hz时,减阻率达到最大为7.4%。  相似文献   

9.
等离子体气动激励控制超声速边界层分离的实验研究   总被引:3,自引:0,他引:3  
孙权  崔巍  程邦勤  金迪  李军 《航空学报》2015,36(2):501-509
等离子体气动激励与超声速气流相互作用已成为高速流动控制领域的研究热点。激波与边界层相互作用现象广泛存在于超声速飞行器之中。本文进行了等离子体气动激励控制压缩角区和激波诱导边界层分离的实验,通过流场纹影显示和壁面静压测量,研究等离子体气动激励如何影响激波、激波如何影响边界层特性的科学问题。实验结果表明:施加毫秒量级表面电弧放电能够前移压缩角区的诱导斜激波,使分离区后移,分离区域增加,但激波强度减弱,流场总压增加;施加微秒量级表面电弧放电能够抑制激波诱导边界层分离,使分离区减小,流场总压减小。基于实验结果,认为毫秒量级表面电弧放电激励控制超声速气流的主要机理为放电过程的焦耳热效应;微秒量级表面电弧放电激励控制超声速气流的主要机理为焦耳热效应和冲击波效应共同作用。  相似文献   

10.
超临界机翼介质阻挡放电等离子体流动控制   总被引:3,自引:2,他引:3  
张鑫  黄勇  王勋年  王万波  唐坤  李华星 《航空学报》2016,37(6):1733-1742
为了进一步提高等离子体激励器可控雷诺数,采用测力以及粒子图像测速(PIV)等研究方法,从二维机翼到三维半模,从低雷诺数到高雷诺数,开展了对称布局式介质阻挡放电(DBD)等离子体激励器控制超临界机翼气动特性的试验研究,分析了控制机理,实现了等离子体"虚拟舵面"的功能。结果表明:在雷诺数为2×106的情况下,对称布局式等离子体气动激励能较好地抑制超临界机翼绕流流场分离,使失速迎角推迟2°,最大升力系数提高8.98%。  相似文献   

11.
控制超临界翼型边界层分离的微型涡流发生器数值模拟   总被引:1,自引:0,他引:1  
本文基于任意曲线坐标系下的雷诺平均Navier-Stokes方程和Spalart-Allmaras一方程湍流模型,采用对接拼接网格技术和多重网格加速收敛技术,对安装有叶片式微型涡流发生器的超临界机翼翼身组合体进行了数值模拟,研究了微型涡流发生器的高度和弦向安装位置对超临界机翼附面层流动控制的机理以及对超临界机翼气动性能的影响规律。  相似文献   

12.
平板附面层等离子体流动控制的数值模拟   总被引:2,自引:1,他引:2  
通过求解电场中的拉普拉斯方程和赫姆霍兹方程的变形形式,成功地将等离子体激励对平板附面层流动的影响,以体积力向量的形式引入到NS方程之中.借助求解的电荷密度,通过将计算结果与实验数据的对比,可确定德拜长度、最大电荷密度、形状因子等可调参数的取值原则,建立起平板附面层等离子体流动控制的数值模拟方法,为将等离子体流动控制方法应用于外流及内流场中的强剪切流动控制,奠定关键性的技术支撑.   相似文献   

13.
扇翼飞行器翼型附面层控制数值模拟   总被引:3,自引:0,他引:3  
杜思亮  芦志明  唐正飞 《航空学报》2016,37(6):1781-1789
基于扇翼飞行器翼型特殊的几何形状及流场特性,在原有翼型的弧形槽下方和后缘加装控制阀门,通过调节阀门开启及开启尺寸的大小,利用弧形槽低压涡所产生的吸力对翼型后缘的附面层进行一定的控制,达到增升减阻的效果。通过采用计算流体力学的方法对其机理及阀门开启尺寸的影响进行了详细计算和分析,研究表明当阀门开启的尺寸为10 mm时,修改翼型的最大升力系数、失速迎角及相同迎角下的升力系数和推力系数均大于基本翼型;随着阀门开启尺寸的增大,修改翼型的最大升力系数和失速迎角均减小,但是在失速前,修改翼型在相同迎角下的升力系数大于基本翼型。此方法可以改变先前通过增大横流风扇的转速来提高其气动性能的做法,减小了能量的消耗,增大了整个飞行器的航程,为扇翼飞行器能够早日投入实际运用奠定了一定的理论基础。  相似文献   

14.
壁面温度控制对平板边界层影响的数值研究   总被引:2,自引:0,他引:2  
通过对零压力梯度的平板边界层流动施加温度控制,展开壁面温度控制对平板层流边界层和湍流边界层影响的研究,探索温度控制对平板转捩雷诺数和壁面摩擦阻力的影响规律。采用带有转捩模式的三方程湍流模型对平板边界层流动进行数值模拟,重点考察了壁面摩阻系数、平板转捩雷诺数、湍流边界层流动随壁面温度变化的规律。计算结果表明在壁面温度从288 K 增大到432 K 时,边界层转捩雷诺数增大约36%,表面摩擦阻力减少约9.6%。研究分析表明:加热控制使层流区域温度边界层内粘性作用增强,雷诺切应力和湍动能减小,流动更加稳定;而湍流区域边界层内粘性底层中速度梯度和粘性切应力减小,导致壁面处摩擦切应力减小。因此壁面加热控制可以延迟边界层转捩,减小湍流区摩阻系数,并减小平板摩擦阻力。  相似文献   

15.
采用附面层抽吸(BLS)控制流动分离的数值模拟   总被引:6,自引:12,他引:6       下载免费PDF全文
采用数值模拟的方法,研究了附面层抽吸(BLS)对两种具有不同分离特征的叶栅流场的气动影响。通过比较抽吸前后极限流线谱和叶栅损失的变化,对抽吸前后的流场进行定性分析。结果表明,采用附面层抽吸技术可以明显改善大转角、大分离叶栅的气动性能。其中,对以闭式分离为主要特征的叶栅流场,其最佳抽吸位置为主分离区的起始位置,即鞍点附近;对以开式分离为主要特征的叶栅流场,其最佳抽吸位置位于主分离区的上游。  相似文献   

16.
带有压力梯度的平板边界层转捩数值模拟   总被引:1,自引:1,他引:0  
董平  黄洪雁  冯国泰 《航空动力学报》2007,22(11):1909-1914
对零压力梯度和带有压力梯度的平板边界层转捩实验T3A,T3C1和T3C2进行了数值模拟,计算结果与实验值吻合的较好,并得出以下的结论:压力梯度的存在对转捩起始的位置有较大的影响;M-L转捩模型能比较准确地预测转捩的发生和发展过程,但M-L一方程转捩模型因为要根据经验选取转捩起始动量厚度雷诺数,所以在通用性上相对M-L二方程转捩模型要弱;使用M-L转捩模型计算过程中,根据湍流的性质选取进口粘性比有助于正确地预测转捩的发展过程.   相似文献   

17.
用非线性涡粘性模式计算三维湍流边界层   总被引:2,自引:1,他引:2  
针对非线性涡粘性模式在求解三维湍流边界层流动时的不足,本文从压力-变形率关联项中的快速项出发,考虑流动非均匀影响,在显式代数应力模式的雷诺应力表达式中引入了反映雷诺应力“松驰”效应的速度二阶导数项,构造了一个新的非线性涡粘性模式。通过对典型算例-翼体角隔流动的计算结果表明,新模式能较好地再现出三维湍流边界层内雷诺切应力方向的发展滞后于速度梯度方向发展这一流动特性。  相似文献   

18.
为了研究温度梯度对边界层转捩的影响,在对有/无压力梯度的T3系列平板转捩实验进行数值模拟获得满意结果的基础上,对原型实验进行重新设计,以在平板边界层内形成不同温度梯度并进行数值模拟。计算结果表明随着温度梯度的增大,转捩位置向下游推延发生,平板相同位置边界层的形状参数和壁面切应力系数也相应大幅增高,边界层湍流脉动得到抑制,这是因为温度梯度形成的密度分层,湍流能量为了克服因为密度分层形成的法向浮力而被逐渐耗散,但是温度梯度对转捩影响与其它流动特性对转捩的影响相比较弱。  相似文献   

19.
为了研究涡发生器(VGs)间距λ对控制边界层分离效果的影响,选取了4种涡发生器间距,λ/H(H为涡发生器高度)分别为5,7,9,11.采用大涡模拟(LES)方法对带逆压梯度的平板边界层分离流动及VGs控制分离流动进行了数值模拟.分析了有无VGs控制时,湍流场中大尺度相干结构及其演化规律,分别从旋涡间距、边界层内流体动能、压差损失等方面考察了VGs间距对控制流动分离效果的影响.研究结果表明当λ/H为5时,VGs间距过小抑制了旋涡的展向发展,λ/H为9,11时,VGs间距过大边界层内流体动能偏低,当间距λ/H为7时流动控制效果更优,此时计算域压差损失最小,相比较无VGs控制时,压差损失降低了30.95%.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号