首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
热等静压温度对新型粉末冶金高温合金显微组织的影响   总被引:4,自引:0,他引:4  
研究了不同热等静压温度下某新型粉末冶金高温合金的显微组织,重点分析了热等静压温度对热等静压态合金锭坯晶粒度、残余枝晶和粉末原始颗粒边界(PPB)以及γ′相的影响。研究结果表明:热等静压温度为1140℃时,获得不完全再结晶组织,存在明显的残余枝晶和PPB,γ′分布不均匀,尺寸、形态各异;热等静压温度为1180℃时,获得较均匀的再结晶组织,残余枝晶和PPB基本消除,γ′分布较均匀,晶内主要为"田"字形,而在晶界呈长条状。  相似文献   

2.
研究了超温对热等静压FGH96合金原始颗粒边界(PPB)、拉伸性能及冲击性能的影响,并分析了力学性能试样的宏观和微观断口特征。分析发现,超温后FGH96合金中的PPB会有所增加,且随着超温温度的提高,增加得更为明显;相同超温温度下,超温时间对PPB的影响不明显。超温后热等静压FGH96合金的拉伸强度有所降低,而拉伸塑性和冲击韧性略有提高,拉伸断口和冲击断口沿PPB开裂的特征更加明显。  相似文献   

3.
研究了热等静压温度对K447A合金显微组织及性能的影响。测试了合金的持久性能和室温拉伸性能。利用金相显微镜(OM)和扫描电镜(SUM)观察了合金显微组织。结果表明,1185~1210℃/180MPa/4h(+1185℃/2h,AC+1100℃/4h,AC+870℃/20h,AC)下,随热等静压温度的提高,合金中显微疏松逐步闭合,碳化物逐步细化和球化;γ-γ’共晶相尺寸和数量逐步减小,共晶特征趋于不明显;晶界呈不连续颗粒状;存在大、小两种尺寸的γ’相。经1185~1210℃HIP处理的合金980℃/200MPa持久性能大幅提高;经1195℃HIP的合金760℃/724MPa持久性能达到最高。经1210℃HIP处理的合金980℃/200MPa持久性能达到最高。180MPa/4h条件下,K447A合金合适的热等静压温度为1185~1210℃。  相似文献   

4.
热等静压后炉冷对K488合金显微组织和力学性能的影响   总被引:1,自引:0,他引:1  
采用热等静压及不同的热处理工艺对铸造高温合金K488进行了处理,研究了不同工艺方法对合金微观组织、高温拉伸性能和持久性能的影响。结果表明:与铸态合金相比较,经过1180℃/150MPa/4h热等静压并炉冷后,枝晶干区γ'相形态不规则,数量减少,枝晶间区γ-γ'共晶体仍然存在,900℃拉伸和持久性能降低。热等静压试样再经过标准热处理(1170℃/4.5h固溶 1050℃/4.5h时效 850℃/16 h时效)后,枝晶杆区γ'相的形态从不规则形态恢复到近立方状,分布也变得更均匀,枝晶间区γ/γ'共晶体完全消失,使900℃拉伸和持久性能得到提高并超过铸态合金的。不同工艺状态中,标准热处理试样的枝晶杆区γ'相尺寸最细、分布最均匀,力学性能最高。  相似文献   

5.
6.
粉末高温合金FGH95和FGH96的热机械疲劳性能   总被引:1,自引:0,他引:1  
对粉末高温合金FGH95和FGH96进行了温度循环为350℃到600℃的同相位和反相位热机械疲劳试验.分析比较了两种合金的热机械疲劳滞后回线、循环应力响应行为和疲劳寿命.研究结果表明:FGH95合金和FGH96合金的热机械疲劳应力-应变滞后回线拉压对称,合金表现出高强度低塑性的特点;在相同总应变范围下,FGH96合金的...  相似文献   

7.
利用扫描电镜原位观察的方法研究了粉末高温合金FGH96中不同级别的原始颗粒边界(PPB)在550℃下对合金高周疲劳力学行为的影响。结果表明:采用等离子旋转电极(PREP)制粉+热等静压(HIP)工艺制备的FGH96合金中PPB主要由大尺寸γ'相和碳化物组成;不同级别的PPB对高周疲劳裂纹萌生和扩展均无显著影响,裂纹萌生于晶粒内部,裂纹扩展受晶界与应力轴角度影响,穿晶或沿晶扩展;在裂纹快速扩展区和瞬断区,PPB级别严重的FGH96合金断口呈现穿晶和沿PPB断裂的形貌。  相似文献   

8.
9.
叶呈武 《宇航材料工艺》2012,42(4):75-77,84
研究了A3钢和GH1131高温合金两种材料作为模具对TC4钛合金HIP组织的影响。结果表明在HIP过程中,A3钢模具对有效应力传递的阻碍作用较大,设计HIP用A3钢模具时应避免深型腔结构,GH1131模具对有效应力传递的影响较小。受元素互扩散的影响,两种模具材料在HIP过程中均污染了TC4材料表面,A3钢模具对合金的影响层较薄,但使材料形成了波浪形的粗糙表面;GH1131对成形材料的影响层厚度>100μm。为了获得高精度的无污染表面,TC4合金HIP净成形时两种模具均需要进行表面处理,形成与TC4兼容的保护层。  相似文献   

10.
粉末高温合金FGH96惯性摩擦焊接头常温力学性能分析   总被引:2,自引:0,他引:2  
第二代粉末高温合金FGH96是采用损伤容限设计思想研制的新型粉末高温合金,是当前750℃工作条件下满足高推比、高燃效发动机使用要求的涡轮盘、环形件和其他热端部件的理想材料.结合FGH96惯性摩擦焊接头的组织特征和强化相γ′数量分析接头的显微硬度和常温拉伸性能.结果表明,FGH96惯性摩擦焊接头具有良好的常温力学性能.  相似文献   

11.
基于FGH96合金双锥体试样及圆柱试样等温压缩变形实验,研究了变形温度、应变速率及应变对晶粒异常长大的影响规律,并对双锥体试样的等温压缩进行了数值模拟计算。结果表明:通过双锥体试样等温压缩,总结出FGH96合金在变形温度960~1060℃,应变速率0.0032~0.032s-1范围内,异常晶粒长大的敏感工艺参数组合。当变形温度1040℃,压头速率0.1mm/s时,在应变0.03~0.2范围内,FGH96合金晶粒组织均匀,无异常晶粒组织出现。建立了FGH96合金的有限元模型,模拟了双锥体试样的等温压缩,得到了与试样截面晶粒分布特征相对应的应变分布。  相似文献   

12.
基于楔形试样等温锻造试验,采用Deform-3D模拟软件,模拟确定了楔形试样中不同位置的变形量,研究了不同变形温度和不同变形量对挤压态FGH96合金晶粒异常长大的影响。结果表明:在压下速率0.04 mm/s的平模镦粗试验条件下,挤压态 FGH96合金出晶粒异常长大的临界变形温度为1100℃,临界变形量为2%;1000~1070℃锻造变形时,合金不易发生晶粒异常长大,但也有“临界变形量”特征,变形量5%~10%区域晶粒平均直径最大;选择15%及以上的变形量,可以避免晶粒异常长大,并获得均匀细小的晶粒组织。  相似文献   

13.
细晶态FGH96热成型时的流动行为研究   总被引:5,自引:0,他引:5  
 通过热模拟试验,对细晶态FGH96 合金的高温流动特性进行了研究,分别从宏观和微观上对影响FGH96 流动特性的因素(变形温度、变形速率和变形程度以及Z 因子和动态再结晶晶粒尺寸等) 作了系统分析。结果表明:变形温度、变形速率和变形程度对流动应力和再结晶晶粒尺寸均有不同程度的影响。在此基础上,建立了细晶态FGH96 合金热成型时的本构模型,该模型充分考虑了变形温度、变形速率和变形程度对流动应力的影响,这对FGH96 合金热成型过程的数值模拟和热力参数的合理制订具有重要意义。  相似文献   

14.
在锻造领域,多采用数字模型进行工艺设计和过程控制,但数字模型无法完成材料成形过程的实时控制。因此,有必要建立一种适合于实时控制的材料动态流动行为模型,以提高生产效率和锻件质量。通过热模拟试验,对细晶态FGH96合金的高温流动特性进行了研究,用BP(Back Propagation)网络建立了FGH96合金热变形行为的人工神经网络模型,根据电模拟理论,利用模拟电路的快速反应与易于控制等特点,建立了基于ANN的FGH96合金的模拟电路模型。测试结果表明,所建立的ANN模型和模拟电路模型均具有较高的预测精度,能很好地反映材料热成形过程的动态流动行为,可用于材料热成形过程的实时控制。  相似文献   

15.
FGH95粉末镍基合金热处理后的微观组织与蠕变性能   总被引:2,自引:0,他引:2  
通过进行蠕变曲线测定和组织形貌观察,研究了FGH95粉末镍基合金的微观组织结构与蠕变行为。结果表明:合金经高温固溶、盐浴冷却处理后,组织结构是由细小的γ’相弥散分布在γ基体所组成,其细小(Nb,Ti)C碳化物在晶内及沿晶界不连续析出。在试验的温度和施加应力范围内,合金表现出明显的施加温度敏感性,并测算出合金在稳态蠕变期间的蠕变激活能和应力指数分别为Q=542.07kJ/mol和n=14.8。合金在蠕变期间的变形特征是孪晶和位错在晶内发生双取向滑移,其切入γ’相内的〈110〉超位错可分解形成(1/3)〈112〉超肖克莱不全位错+层错的位错组态,发生孪晶变形的孪晶面为(111)晶面。晶界及沿晶界不连续析出的细小(Nb,Ti)C型碳化物可有效阻碍位错运动,是使合金具有较高抗蠕变能力的主要原因。  相似文献   

16.
This article makes an investigation into the creep behavior and deformation features of FGH95 powder Ni-base superalloy by means of creep curves and microstructural observation. Results show that this superalloy exposes obvious sensibility to the applied temperature and stresses in the experimental range. Microstructure of the alloy consists of γ′ phase of various sizes and dispersed carbide particles precipitated in the wider crystal boundaries between the powder particles. During the creep, the deformation of the alloy occurs in the form of single- or double-oriented slipping inside the grains, and some of the finer carbide particles are precipitated near the slipping traces. The wide grain boundaries might be broken into the finer grains due to severe deformation. The deformation mechanism of the alloy during creep is thought to be the activation of dislocations of double-oriented slipping, including (1/2)<110> dislocation inside the γ matrix phase and <110> super-dislocation inside the γ′ phase. The formation of the stacking faults and (1/3)<112> super-Shockleys partial dislocation configuration is attributed to the decomposition of <110> super-dislocation in the γ′ phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号