首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In November 2000, the National Aeronautics and Space Administration (NASA) and its partners in the International Space Station (ISS) ushered in a new era of space flight: permanent human presence in low-Earth orbit. As the culmination of the last four decades of human space flight activities. the ISS focuses our attention on what we have learned to date. and what still must be learned before we can embark on future exploration endeavors. Space medicine has been a primary part of our past success in human space flight, and will continue to play a critical role in future ventures. To prepare for the day when crews may leave low-Earth orbit for long-duration exploratory missions, space medicine practitioners must develop a thorough understanding of the effects of microgravity on the human body, as well as ways to limit or prevent them. In order to gain a complete understanding and create the tools and technologies needed to enable successful exploration. space medicine will become even more of a highly collaborative discipline. Future missions will require the partnership of physicians, biomedical scientists, engineers, and mission planners. This paper will examine the future of space medicine as it relates to human space exploration: what is necessary to keep a crew alive in space, how we do it today, how we will accomplish this in the future, and how the National Aeronautics and Space Administration (NASA) plans to achieve future goals.  相似文献   

2.
《Space Policy》2014,30(3):163-169
The planning of human spaceflight programmes is an exercise in careful rationing of a scarce and expensive resource. Current NASA plans are to develop the new capability for human-rated launch into space to replace the Space Transportation System (STS), more commonly known as the Space Shuttle, combined with a heavy lift capability, and followed by an eventual Mars mission. As an intermediate step towards Mars, NASA proposes to venture beyond Low Earth Orbit to cis-lunar space to visit a small asteroid which will be captured and moved to lunar orbit by a separate robotic mission. The rationale for this and how to garner support from the scientific community for such an asteroid mission are discussed. Key points that emerge are that a programme usually has greater legitimacy when it emerges from public debate, mostly via a Presidential Commission, a report by the National Research Council or a Decadal Review of science goals etc. Also, human spaceflight missions need to have support from a wide range of interested communities. Accordingly, an outline scientific case for a human visit to an asteroid is made. Further, it is argued here that the scientific interest in an asteroid mission needs to be included early in the planning stages, so that the appropriate capabilities (here the need for drilling cores and carrying equipment to, and returning samples from, the asteroid) can be included.  相似文献   

3.
Joseph Lorenzo Hall   《Space Policy》2003,19(4):239-247
The National Aeronautics and Space Administration (NASA)—as the global leader in all areas of spaceflight and space science—is a unique organization in terms of size, mission, constraints, complexity and motivations. NASA's flagship endeavor—human spaceflight—is extremely risky and one of the most complicated tasks undertaken by man. It is well accepted that the tragic destruction of the Space Shuttle Challenger on 28 January 1986 was the result of organizational failure. The surprising disintegration of the Space Shuttle Columbia in February 2003—nearly 17 years to the day after Challenger—was a shocking reminder of how seemingly innocuous details play important roles in risky systems and organizations. NASA as an organization has changed considerably over the 42 years of its existence. If it is serious about minimizing failure and promoting its mission, perhaps the most intense period of organizational change lies in its immediate future. This paper outlines some of the critical features of NASA's organization and organizational change, namely path dependence and “normalization of deviance”. Subsequently, it reviews the rationale behind calling the Challenger tragedy an organizational failure. Finally, it argues that the recent Columbia accident displays characteristics of organizational failure and proposes recommendations for the future.  相似文献   

4.
The current emphasis on smaller, faster, cheaper (SFC) spacecraft in NASA’s solar system exploration program is the product of a number of interacting – even interdependent – factors. The SFC concept as applied to NASA’s solar system exploration program can be viewed as the vector sum of (1) the space science community’s desire for more frequent planetary missions to plug the data gaps, educate the next generation of scientists, provide missions to targets of opportunity, and enable programmatic flexibility in times of budgetary crisis; (2) the poor publicity garnered by NASA in the early 1990s and the resultant atmosphere of public criticism (creating an opportunity for reform); (3) The Strategic Defense Initiative Organization’s and the National Space Council community’s desire to advance the Space Exploration Initiative and their perception that the NASA culture at the time represented a barrier to the effective pursuit of space exploration; (4) the effective leadership of NASA Administrator Daniel Goldin; and (5) the diminishing budget profile for space sciences in the early 1990s. This paper provides a summary of the origin of the smaller, faster, cheaper approach in the planetary program. A more through understanding of the history behind this policy will enable analysts to assess more accurately the relative successes and failures of NASA’s new approach to solar system exploration.  相似文献   

5.
Dave Wright   《Space Policy》2007,23(3):180-181
The conference began with The Charles Martin Lecture, given this year by George Abbey, formerly Director of the NASA Johnson Spaceflight Center. George spoke of the significant contribution of British scientists and engineers to the early days of NASA. He was followed by an ebullient tour d’horizon from the admirable Dr David Southwood, Head of Science at ESA. Lucie Green from Mullard Space Science Laboratory (MSSL), who is leading the outreach component of the International Heliophysical Year, then brought the first session to a close. The conference then split into three parallels.  相似文献   

6.
归因于空间环境的航天器故障与异常   总被引:1,自引:0,他引:1  
天然空间环境对航天器设计、研制和运行的影响是NASA马歇尔空间飞行中心系统分析和集成实验室电磁与航空宇宙环境部组织编写的一系列NASA RP报告的主题.其中,NASA RP-1390详细概述了天然空间环境7个主要环境因素,包括它们的简单定义、相关的型号计划事项以及对各种航天器分系统的影响.该报告提供100多个从1974...  相似文献   

7.
Mendell WW 《Acta Astronautica》2005,57(2-8):676-683
The Vision for Space Exploration invokes activities on the Moon in preparation for exploration of Mars and also directs International Space Station (ISS) research toward the same goal. Lunar missions will emphasize development of capability and concomitant reduction of risk for future exploration of Mars. Earlier papers identified three critical issues related to the so-called NASA Mars Design Reference Mission (MDRM) to be addressed in the lunar context: (a) safety, health, and performance of the human crew; (b) various modalities of mission operations ranging surface activities to logistics, planning, and navigation; and (c) reliability and maintainability of systems in the planetary environment. In simple terms, lunar expeditions build a résumé that demonstrates the ability to design, construct, and operate an enterprise such as the MDRM with an expectation of mission success. We can evolve from Apollo-like missions to ones that resemble the complexity and duration of the MDRM. Investment in lunar resource utilization technologies falls naturally into the Vision. NASA must construct an exit strategy from the Moon in the third decade. With a mandate for continuing exploration, it cannot assume responsibility for long-term operation of lunar assets. Therefore, NASA must enter into a partnership with some other entity--governmental, international, or commercial--that can responsibly carry on lunar development past the exploration phase.  相似文献   

8.
This paper shares an interesting and unique case study of knowledge capture by the National Aeronautics and Space Administration (NASA), an ongoing project to recapture and make available the lessons learned from the Apollo lunar landing project so that those working on future projects do not have to “reinvent the wheel”. NASA’s new Constellation program, the successor to the Space Shuttle program, proposes a return to the Moon using a new generation of vehicles. The Orion Crew Vehicle and the Altair Lunar Lander will use hardware, practices, and techniques descended and derived from Apollo, Shuttle, and the International Space Station. However, the new generation of engineers and managers who will be working with Orion and Altair are largely from the decades following Apollo, and are likely not well aware of what was developed in the 1960s. In 2006, a project at NASA’s Johnson Space Center was started to find pertinent Apollo-era documentation and gather it, format it, and present it using modern tools for today’s engineers and managers. This “Apollo Mission Familiarization for Constellation Personnel” project is accessible via the web from any NASA center for those interested in learning answers to the question “how did we do this during Apollo?”  相似文献   

9.
Manned spaceflight has been an important element of the German space program over the last decades. This is demonstrated by the nationally managed space missions Spacelab D-l (1985), D-2 (1993), and MIR '92 as well as by the participation in the 1st Spacelab mission FSLP (1983), the NASA missions IML-1 (1992) and IML-2 (1994), as well as in the ESA missions EUROMIR '94 and '95. On February 12th, this year, the German cosmonaut Reinhold Ewald was launched together with his Russian colleagues Wasilij Zibliew and Alexander Lasudkin onboard of a Soyuz spacecraft for another stay of a German cosmonaut onboard of the Russian Space Station MIR. This mission--the so-called German/Russian MIR '97--was, of course, another cornerstone with regard to the cooperation between Russian and German space organizations. The cooperation in the area of manned missions began 1978 with the flight of the German cosmonaut Sigmund Jahn onboard of Salyut 6, at that time a cooperation between the Soviet Union and the German Democratic Republic in the frame of the Interkosmos Program. In March 1992, it was followed by the flight of Klaus Dietrich Flade with his stay onboard of MIR. After two further successful ESA missions, EUROMIR '94 and '95 with the two German cosmonauts Ulf Merbold and Thomas Reiter and with a marked contribution of German scientists, the decision was taken to perform another German/Russian MIR mission, the so-called MIR '97. In Germany, MIR'97 was managed and performed in a joint effort between several partners. DARA, the German Space Agency, was responsible for the overall program and project management, while DLR, the German Aerospace Research Establishment, was responsible for the cosmonaut training, for medical operations, for the mission control at GSOC in Oberpfaffenhofen as well as for user support.  相似文献   

10.
《Acta Astronautica》1987,15(3):181-187
QUASAT is a joint ESA/NASA cooperative mission for a free-flying VLBI antenna to be used with the U.S. and European ground arrays. The spaceborn reflector shall have a diameter of 15 m or more and shall operate at three frequencies: 1.6, 5 and 22 GHz. These requirements are very stringent and very difficult to satisfy. The reflector proposed by the European Space Agency as part of the Quasat assessment study shall be presented. Such reflector shall use the Inflatable Space Rigidized technology under development within ESA. Results of the performances envisaged from such design shall be discussed together with the manufacturing and testing problems envisaged for such reflector. Results derived by different reflector design but using the same Inflatable Space Rigidized technology shall also be presented.  相似文献   

11.
The Mars Sample Return Project.   总被引:1,自引:0,他引:1  
The Mars Sample Return (MSR) Project is underway. A 2003 mission to be launched on a Delta III Class vehicle and a 2005 mission launched on an Ariane 5 will culminate in carefully selected Mars samples arriving on Earth in 2008. NASA is the lead agency and will provide the Mars landed elements, namely, landers, rovers, and Mars ascent vehicles (MAVs). The French Space Agency CNES is the largest international partner and will provide for the joint NASA/CNES 2005 Mission the Ariane 5 launch and the Earth Return Mars Orbiter that will capture the sample canisters from the Mars parking orbits the MAVs place them in. The sample canisters will be returned to Earth aboard the CNES Orbiter in the Earth Entry Vehicles provided by NASA. Other national space agencies are also expected to participate in substantial roles. Italy is planning to provide a drill that will operate from the Landers to provide subsurface samples. Other experiments in addition to the MSR payload will also be carried on the Landers. This paper will present the current status of the design of the MSR missions and flight articles.  相似文献   

12.
《Acta Astronautica》2007,60(4-7):599-606
The National Space Biomedical Research Institute (NSBRI) Education and Public Outreach Program (EPOP) is supporting the National Aeronautics and Space Administration's (NASA) new vision for space exploration by educating and inspiring the next generation of students through a seamless pipeline of kindergarten through postdoctoral education programs. NSBRI EPOP initiatives are designed to train scientists and to communicate the significance of NSBRI science, as well as other space exploration science, to schools, families and lay audiences. The NSBRI EPOP team is comprised of eight main partners: Baylor College of Medicine (BCM), Binghamton University–State University of New York (BUSUNY), Colorado Consortium for Earth and Space Science Education (CCESSE), Massachusetts Institute of Technology (MIT), Morehouse School of Medicine (MSM), Mount Sinai School of Medicine (MSSM), Rice University and the University of Texas Medical Branch (RU–UTMB), and Texas A&M University (TAMU). The current kindergarten through undergraduate college (K-16) team, which was funded through an open national competition in 2004, consolidates the past 7 years of K-16 education activities and expands the team's outreach activities to more museums and science centers across the nation. NSBRI also recently expanded its education mission to include doctoral and postdoctoral level programs. This paper describes select K-16 EPOP activities and products developed over the past 7 years, and reports on new activities planned for the next 3 years. The paper also describes plans for a doctoral program and reports on 1st-year outcomes of the new postdoctoral program.  相似文献   

13.
The National Space Biomedical Research Institute (NSBRI) is supporting the National Aeronautics and Space Administration's (NASA) education mission through a comprehensive Education and Public Outreach Program (EPOP) that communicates the excitement and significance of space biology to schools, families, and lay audiences. The EPOP is comprised of eight academic institutions: Baylor College of Medicine, Massachusetts Institute of Technology, Morehouse School of Medicine, Mount Sinai School of Medicine, Texas A&M University, University of Texas Medical Branch Galveston, Rice University, and the University of Washington. This paper describes the programs and products created by the EPOP to promote space life science education in schools and among the general public. To date, these activities have reached thousands of teachers and students around the US and have been rated very highly.  相似文献   

14.
Over the last 5 years, NASA has invested in development and risk-reduction activities for a new generation of planetary landers capable of carrying instruments and technology demonstrations to the lunar surface and other airless bodies. The Robotic Lunar Lander Development Project (RLLDP) is jointly implemented by NASA Marshall Space Flight Center (MSFC) and the Johns Hopkins University Applied Physics Laboratory (APL). The RLLDP team has produced mission architecture designs for multiple airless body missions to meet both science and human precursor mission needs. The mission architecture concept studies encompass small, medium, and large landers, with payloads from a few tens of kilograms to over 1000 kg, to the Moon and other airless bodies. To mature these concepts, the project has made significant investments in technology risk reduction in focused subsystems. In addition, many lander technologies and algorithms have been tested and demonstrated in an integrated systems environment using free-flying test articles. These design and testing investments have significantly reduced development risk for airless body landers, thereby reducing overall risk and associated costs for future missions.  相似文献   

15.
Recent advances in materials technology have improved the performance capabilities of inflatable, flexible composite structures, which have increased their potential for use in numerous space applications. Space suits, which are comprised of flexible composite components, are a good example of the successful use of inflatable composite structures in space. Space suits employ inflatables technology to provide a stand alone spacecraft for astronauts during extra-vehicular activity. A natural extension of this application of inflatables technology is in orbital or planetary habitat structures. NASA Johnson Space Center (JSC) is currently investigating flexible composite structures deployed via inflation for use as habitats, transfer vehicles and depots for continued exploration of the Moon and Mars.

Inflatable composite structures are being investigated because they offer significant benefits over conventional structures for aerospace applications. Inflatable structures are flexible and can be packaged in smaller and more complex shaped volumes, which result in the selection of smaller launch vehicles which dramatically reduce launch costs. Inflatable composite structures are typically manufactured from materials that have higher strength to weight ratios than conventional systems and are therefore lower in mass. Mass reductions are further realized because of the tailorability of inflatable composite structures, which allow the strength of the system to be concentrated where needed. Flexible composite structures also tend to be more damage tolerant due to their “forgiveness” as compared to rigid mechanical systems. In addition, inflatables have consistently proven to be lower in both development and manufacturing costs.

Several inflatable habitat development programs are discussed with their increasing maturation toward use on a flight mission. Selected development programs being discussed include several NASA Langley Research Center habitat programs that were conducted in the 1960s, the Lawrence Livermore National Laboratory inflatable space station study, the NASA JSC deployable inflatable Lunar habitat study, and the inflatable Mars TransHab study and test program currently ongoing at NASA JSC. Relevant technology developments made by ILC Dover are also presented.  相似文献   


16.
Computer graphics is being employed at the NASA Johnson Space Center as a tool to perform rapid, efficient and economical analyses for man-machine integration, flight operations development and systems engineering. The Operator Station Design System (OSDS), a computer-based facility featuring a highly flexible and versatile interactive software package, PLAID, is described. This unique evaluation tool, with its expanding data base of Space Shuttle elements, various payloads, experiments, crew equipment and man models, supports a multitude of technical evaluations, including spacecraft and workstation layout, definition of astronaut visual access, flight techniques development, cargo integration and crew training. As OSDS is being applied to the Space Shuttle, Orbiter payloads (including the European Space Agency's Spacelab) and future space vehicles and stations, astronaut and systems safety are being enhanced. Typical OSDS examples are presented. By performing physical and operational evaluations during early conceptual phases. supporting systems verification for flight readiness, and applying its capabilities to real-time mission support, the OSDS provides the wherewithal to satisfy a growing need of the current and future space programs for efficient, economical analyses.  相似文献   

17.
Upcoming National Aeronautics and Space Administration (NASA) mission concepts include satellite arrays to facilitate imaging and identification of distant planets. These mission scenarios are diverse, including designs such as the terrestrial planet finder-occulter (TPF-O), where a monolithic telescope is aided by a single occulter spacecraft, and the micro-arcsecond X-ray imaging mission (MAXIM), where as many as 16 spacecraft move together to form a space interferometer. Each design, however, requires precise reconfiguration and star tracking in potentially complex dynamic regimes. This paper explores control methods for satellite imaging array reconfiguration in multi-body systems. Specifically, optimal nonlinear control and geometric control methods are derived and compared to the more traditional linear quadratic regulators, as well as input state feedback linearization. These control strategies are implemented and evaluated for the TPF-O mission concept.  相似文献   

18.
《Acta Astronautica》2009,64(11-12):1283-1298
Upcoming National Aeronautics and Space Administration (NASA) mission concepts include satellite arrays to facilitate imaging and identification of distant planets. These mission scenarios are diverse, including designs such as the terrestrial planet finder-occulter (TPF-O), where a monolithic telescope is aided by a single occulter spacecraft, and the micro-arcsecond X-ray imaging mission (MAXIM), where as many as 16 spacecraft move together to form a space interferometer. Each design, however, requires precise reconfiguration and star tracking in potentially complex dynamic regimes. This paper explores control methods for satellite imaging array reconfiguration in multi-body systems. Specifically, optimal nonlinear control and geometric control methods are derived and compared to the more traditional linear quadratic regulators, as well as input state feedback linearization. These control strategies are implemented and evaluated for the TPF-O mission concept.  相似文献   

19.
X-ray astronomy is in a privileged situation with the successful missions Chandra and XMM-Newton for more than 10 years in orbit, and Astro-H in the building phase. Over the past 10 years ESA, NASA, and YAXA studies have been made of follow-up missions, like Constellation-X, XEUS, IXO, and ATHENA. This presentation will highlight the technological challenges encountered to build X-ray optics and instrumentation for these types of missions. The optics requires an order of magnitude more collecting area (>5 m2) for a few seconds of arc spatial resolution. This drives the focal length of the telescope (∼25 m), and thereby the complexity of the spacecraft. Furthermore new technologies are required to realize such an optic within a reasonable mass. The detectors require significant improvement in field of view (number of pixels), energy resolution, and count rate ability. This tends to be possible by the use of Si-based imaging arrays with a large number of pixels, high detection efficiency, and high count rate ability at one side, and the development of modest imaging arrays of cryogenic sensors with very high energy resolution and good detection efficiency at the other side. The cryogenic detectors require further development of cooling systems based on mechanical coolers, like employed for the 1st time on Planck, and planned for Astro-H. The biggest challenge for the realization of such a mission is however not technical. That challenge is that the realization of this future X-ray astronomy mission will require coordination between scientists and Space Agencies on a Global scale.  相似文献   

20.
This paper provides an overview and summary of U.S. extravehicular activity accomplishments of the last 26 years, Space Shuttle missions having scheduled extravehicular activities to be performed over the next several years, extravehicular activities expected to be necessary to support Space Station Freedom assembly tasks and operations, and potential extravehicular activity roles of the NASA Space Exploration Initiative Program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号