首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The plasma density distribution of plasmasphere in the geomagnetic equatorial plane can help us study the magnetosphere like plasmasphere, ionosphere and their kinetics. In this paper, we introduce a new inversion method, GE-ART, to calculate the plasma density distribution in the geomagnetic equatorial plane from the Extreme Ultraviolet (EUV) data of IMAGE satellite under the assumption that the plasma density is constant along each geomagnetic field line. The new GE-ART algorithm was derived from the traditional Algebraic Reconstruction Techniques (ART) in Computed Tomography (CT) which was different from the several existing methods. In this new method, each value of the EUV image data was back-projected evenly to the geomagnetic field lines intersected by this EUV sight. A 3-D inversion matrix was produced by the contributions of all the voxels contained in the plasmasphere covered by the EUV sensor. That is, we considered that each value of the EUV image data was relative to the plasma densities of all the voxels passed through by the corresponding EUV radiation, which is the biggest difference to all the existing inversion methods. Finally, the GE-ART algorithm was evaluated by the real EUV data from the IMAGE satellite.  相似文献   

2.
对2001-2021年SOHO卫星的极紫外辐射测量数据,以及CHAMP,GRACE-A和SWARM-C卫星资料推导出的高分辨率大气密度数据进行统计分析,发现大气密度与极紫外测量值的相关系数大于密度与F10.7指数的相关系数,证实极紫外辐射在不同地方时的影响程度存在显著差异,从而驱动大气密度的周日变化。利用三颗卫星的高度差异揭示极紫外辐射对大气密度的加热效应在350~500 km范围随着高度增加而减弱。统计得到极紫外辐射影响在地方时和纬度上的空间差异:对夏季半球的影响大于冬季半球;在白天,对中纬度地区的影响高于赤道和高纬度地区;在夜间,密度对辐射的斜率在夏季半球高纬度地区存在峰值,在冬季半球中纬度存在谷值,模型DTM2000和NRLMSISE00未能准确刻画。为了改进经验模型,提出基于球谐函数的拟合方法,优于主流模型周日效应采用的表达式,对周日效应建模和修正提供有益借鉴。利用昼夜间能量传输和热层大气经向环流机制探讨了统计结果的物理机制。  相似文献   

3.
The results of modeling of ionospheric disturbances observed in the East Asian region during moderate storms are presented. The numerical model for ionosphere–plasmasphere coupling developed at the ISTP SB RAS is used to interpret the data of observations at ionospheric stations located in the longitudinal sector of 90–130°E at latitudes from auroral zone to equator. There is obtained a reasonable agreement between measurements and modeling results for winter and equinox. In the summer ionosphere, at the background of high ionization by the solar EUV radiation in the quiet geomagnetic period the meridional thermospheric wind strongly impacts the electron concentration in the middle and auroral ionosphere. The consistent calculations of the thermospheric wind permit to obtain the model results which are closer to summer observations. The actual information about the space-time variations of thermosphere and magnetosphere parameters should be taken into account during storms.  相似文献   

4.
5.
Whistler studies of the plasmapause/plasmasphere are traced from their beginnings during the IGY through the early 1960's, when extensive data from Antarctica became available. Highlights of this period include discovery of the ‘knee’ in the equatorial electron density profile, initial comparisons with results from the Lunik probes, identification of magnetic storm effects, and discovery of the duskside bulge, or region of larger plasmasphere radius, as well as smaller-scale (Δφ ≈ 20°) variations in radius with longitude. In the mid-1960's, whistlers provided the first evidence of cross-L plasma drift patterns in the outer plasmasphere. From a present day perspective, the plasmasphere is seen as a region penetrated, perhaps most efficiently in the dusk sector, by the unsteady component of high latitude electric fields. In the pre-dawn sector, post substorm outward drifts may be an aftereffect of the shielding of the plasmasphere against the steadier components of the substorm electric fields. The available indirect whistler evidence of plasmasphere erosion during large disturbances suggests that erosion occurs primarily in the dusk-premidnight sector.  相似文献   

6.
In this paper we report on initial work toward data assimilative modeling of the Earth’s plasmasphere. As the medium of propagation for waves which are responsible for acceleration and decay of the radiation belts, an accurate assimilative model of the plasmasphere is crucial for optimizing the accurate prediction of the radiation environments encountered by satellites. On longer time-scales the plasmasphere exhibits significant dynamics. Although these dynamics are modeled well by existing models, they require detailed global knowledge of magnetospheric configuration which is not always readily available. For that reason data assimilation can be expected to be an effective tool in improving the modeling accuracy of the plasmasphere. In this paper we demonstrate that a relatively modest number of measurements, combined with a simple data assimilation scheme, inspired by the ensemble Kalman filtering data assimilation technique does a good job of reproducing the overall structure of the plasmasphere including plume development. This raises hopes that data assimilation will be an effective method for accurately representing the configuration of the plasmasphere for space weather applications.  相似文献   

7.
Thermal ion composition measurements by the Retarding Ion Mass Spectrometer (RIMS) on Dynamics Explorer-1 have revealed new and intriguing features of the thermal ion distributions in the plasmasphere and plasmapause regions. Some of the interesting new findings include: the presence of intense fluxes of heated and equatorially-trapped light ions within the plasmapause region; the existence of a heavy ion (0+, 0++, N+) ‘torus’ or ‘shell’ in the outer plasmasphere; and the relatively stable nature of the He+/H+ concentration ratio (∼0.2–0.3) within the plasmasphere. The relatively short (∼7.5 hours) orbital period of DE-1 has also allowed improved observations on the formation of the new outer plasmasphere during the recovery of geomagnetic storms. Statistical studies of plasmaspheric density structure and boundaries are beginning to reveal a picture of their relation to other magnetospheric boundaries, such as the inner edge of the electron plasma sheet, and trends in the internal density structure of the plasmasphere.  相似文献   

8.
Juno, the second mission in the NASA New Frontiers Program, will both be a polar Jovian orbiter, and use solar arrays for power, moving away from previous use of radioisotope power systems (RPSs) in spite of the weak solar light reaching Jupiter. The power generation at Jupiter is critical, and a conductive tether could be an alternative source of power. A current-carrying tether orbiting in a magnetized ionosphere/plasmasphere will radiate waves. A magnitude of interest for both power generation and signal emission is the wave impedance. Jupiter has the strongest magnetic field in the Solar Planetary System and its plasma density is low everywhere. This leads to an electron plasma frequency smaller than the electron cyclotron frequency, and a high Alfven velocity. Unlike the low Earth orbit (LEO) case, the electron skin depth and the characteristic size of plasma contactors affect the Alfven impedance.  相似文献   

9.
We present the spatial maps of the ionosphere–plasmasphere slab thickness τ (ratio of the vertical total electron content, TEC, to the F-region peak electron density, NmF2) during the intense ionospheric storms of October–November 2003. The model-assisted technology for estimate of the upper boundary of the ionosphere, hup, from the slab thickness components in the bottomside and topside ionosphere – eliminating the plasmasphere contribution of τ – is applied at latitudes 35° to 70°N and longitudes −10° to 40°E, from the data of 20 observatories of GPS-TEC and ionosonde networks, for selected days and hours of October and November 2003. The daily–hourly values of NmF2, hmF2 and TECgps are used as the constrained parameters for the International Reference Ionosphere extended to the plasmasphere, IRI-Plas, during the ionospheric quiet days, positive and negative storm phases for estimate of τ and hup. Good correlation has been found between the slab thickness and the upper boundary of the ionosphere for the intense ionospheric storms at October–November 2003. During the negative phase of the ionospheric storm, when the ionospheric plasma density is exhausted, the nighttime upper boundary of the ionosphere is greatly uplifted towards the magnetosphere tail, while the daytime upper boundary of the ionosphere is reduced below 500 km over the Earth.  相似文献   

10.
根据空间天气的状态,调整大气模型的相关输入参数能够减小模型的计算误差.通过对比CHAMP卫星在轨大气密度探测数据与NRLMSISE-00模式的计算结果发现,通过调整F10.7的输入,使轨道大气密度积分的模式计算结果与探测结果之间的误差达到最小,此时的F10.7被称为理想F10.7输入(F*).进一步的分析发现,F*与太阳紫外辐射MgII指数存在很好的相关性,因此可以选择其他的太阳紫外辐射代理参数取代F10.7,从而减小模型计算误差.本文采用神经网络技术,建立新的太阳紫外辐射代理参量Feuv与MgII,F10.7等的对应模型,能够根据当日参数值计算Feuv.研究结果表明,新的代理参数能够有效减小NRLMSISE-00的计算误差.   相似文献   

11.
The period of field line resonance (FLR) type geomagnetic pulsations depends on the length of the field line and on the plasma density in the inner magnetosphere (plasmasphere), where field lines are closed. Here as FLR period, the period belonging to the maximum occurrence frequency of the occurrence frequency spectrum (equivalent resonance curve) of pulsations has been considered. The resonance system may be replaced by an equivalent resonant circuit. The plasma density would correspond to the ohmic load. The plasma in the plasmasphere originates from the ionosphere, thus FLR period, occurrence frequency are also affected by the maximum electron density in the ionosphere. The FLR period has shown an enhancement with increasing F region electron density, while the occurrence frequency indicated diminishing trend (possible damping effect). Thus, the increased plasma density may be the cause of the decreased occurrence of FLR type pulsations in the winter months of solar activity maximum years (winter anomaly).  相似文献   

12.
The Extreme Ultraviolet Explorer (EUVE) Mission is described. The purpose of this mission is to search the celestial sphere for astronomical sources of extreme ultraviolet (EUV) radiation (100–1000Å). The search will be accomplished with the use of three EUV telescopes, each sensitive to different bands within the EUV band. A fourth telescope will perform a high sensitivity search of a limited sample of the sky in a single EUV band. In six months, the entire sky will be scanned at a sensitivity level comparable to existing surveys in other more traditional astronomical bandpasses. A substantial number of EUV sources such as hot white dwarfs and stellar coronae are certain to be discovered given our current knowledge. More uncertain is what entirely new classes of objects will be discovered as EUV sources. A moderate resolution (~ 5Å) spectroscopy option is being considered which would cover the band from 80 to 600Å. This instrument would be capable of providing spectra of at least the 100 brightest EUV sources and would be utilized entirely on a Guest Investigator basis.  相似文献   

13.
Using data from the Wide Field Camera EUV all-sky survey, we have established upper limits to the EUV flux from a sample of 30 bright, nearby, non-active spiral galaxies. These galaxies were chosen to be those most likely to be detected in the EUV on the basis of (i) low interstellar absorption within our own galaxy, (ii) brightness in other wavebands, (iii) high star formation activity, and (iv) proximity. The derived EUV upper limits are restrictive, and establish for the first time that the EUV flux escaping from galaxies does not constitute a major component of their bolometric luminosity, and in particular that it cannot be the sink for the energy injected into the interstellar medium by supernova explosions, as had been suggested following the failure to detect this power in the X-ray band.  相似文献   

14.
Data bases and limits of applicability of existing empirical thermospheric models are reviewed by using these models together with solar EUV irradiance data in studying the solar activity effect on composition, density and temperature. For two rather short aeronomy missions of the AEROS A and B satellites solar EUV indices as proposed by Schmidtke are used in comparison with the 10.7 cm solar flux F in determining the solar activity effect in in-situ composition measurements sampled by the same satellites at 250, 310 and 380 km altitude. No advantage of solar EUV indices over F could be determined.  相似文献   

15.
The orbital elements of a low Earth orbiting satellite and their velocities can be used for local determination of gravity anomaly. The important issue is to find direct relations among the anomalies and these parameters. Here, a primary theoretical study is presented for this purpose. The Gaussian equations of motion of a satellite are used to develop integral formulas for recovering the gravity anomalies. The behaviour of kernels of the integrals are investigated for a two-month simulated orbit similar to that of the Gravity field and steady-state ocean circulation explorer (GOCE) mission over Fennoscandia. Numerical investigations show that the integral formulas have neither isotropic nor well-behaved kernels. In such a case, gravity anomaly recovery is not successful due to large spatial truncation error of the integral formulas. Reformulation of the problem by combining the orbital elements and their velocities leads to an integral with a well-behaved kernel which is suitable for our purpose. Also based on these combinations some general relations among the orbital elements and their velocities are obtained which can be used for validation of orbital parameters and their velocities.  相似文献   

16.
The plasmasphere is filled with very low energy plasma upwelling from the topside ionosphere. The field-aligned distribution of this thermal ionospheric plasma is controlled by the gravitational and centrifugal potential distribution. There are two extreme types of hydrostatic plasma distribution in this field-aligned potential : the Diffusive Equilibrium distribution and the Exospheric Equilibrium distribution corresponding respectively to a saturated and to an almost empty magnetic flux tube. As a result of pitch angle scattering by Coulomb collisions an increasing number of ions escaping from the ionosphere are stored on trapped orbits with mirror points at high altitudes in the low density region. As a result of collisions the field-aligned density distribution gradually changes from exospheric equilibrium with a highly anisotropic pitch angle (cigar like) distribution to a diffusive equilibrium with a nearly isotropic pitch angle distribution. It is shown that the suprathermal ions become anisotropic much more slowly than ions of energies smaller than 1 eV. The Coulomb collision times have been estimated for flux tubes at different L values. A numerical simulation of the flux tube refilling process has been presented. The diurnal variation of the equatorial plasma density has been illustrated for plasma elements convected along drift paths which have a large dawn- dusk asymetry. The formation of a Light Ion Trough is discussed. Finally, evidence has also been given for the existence of a ‘plasmaspheric wind’ corresponding to a slow subsonic and continuous radial expansion of the plasma stored in the plasmasphere.  相似文献   

17.
High accuracy satellite drag model (HASDM)   总被引:2,自引:0,他引:2  
The dominant error source in force models used to predict low-perigee satellite trajectories is atmospheric drag. Errors in operational thermospheric density models cause significant errors in predicted satellite positions, since these models do not account for dynamic changes in atmospheric drag for orbit predictions. The Air Force Space Battlelab’s High Accuracy Satellite Drag Model (HASDM) estimates and predicts (out three days) a dynamically varying global density field. HASDM includes the Dynamic Calibration Atmosphere (DCA) algorithm that solves for the phases and amplitudes of the diurnal and semidiurnal variations of thermospheric density near real-time from the observed drag effects on a set of Low Earth Orbit (LEO) calibration satellites. The density correction is expressed as a function of latitude, local solar time and altitude. In HASDM, a time series prediction filter relates the extreme ultraviolet (EUV) energy index E10.7 and the geomagnetic storm index ap, to the DCA density correction parameters. The E10.7 index is generated by the SOLAR2000 model, the first full spectrum model of solar irradiance. The estimated and predicted density fields will be used operationally to significantly improve the accuracy of predicted trajectories for all low-perigee satellites.  相似文献   

18.
19.
We examined performance of two empirical profile-based ionospheric models, namely IRI-2016 and NeQuick-2, in electron content (EC) and total electron content (TEC) representation for different seasons and levels of solar activity. We derived and analyzed EC estimates in several representative altitudinal intervals for the ionosphere and the plasmasphere from the COSMIC GPS radio occultation, ground-based GPS and Jason-2 joint altimeter/GPS observations. It allows us to estimate a quantitative impact of the ionospheric electron density profiles formulation in several altitudinal intervals and to examine the source of the model-data discrepancies of the EC specification from the bottom-side ionosphere towards the GPS orbit altitudes. The most pronounced model-data differences were found at the low latitude region as related to the equatorial ionization anomaly appearance. Both the IRI-2016 and NeQuick-2 models tend to overestimate the daytime ionospheric EC and TEC at low latitudes during all seasons of low solar activity. On the contrary, during high solar activity the model results underestimated the EC/TEC observations at low latitudes. We found that both models underestimated the EC for the topside ionosphere and plasmasphere regions for all levels of solar activity. For low solar activity, the underestimated EC from the topside ionosphere and plasmasphere can compensate the overestimation of the ionospheric EC and, consequently, can slightly decrease the resulted model overestimation of the ground-based TEC. For high solar activity, the underestimated EC from the topside ionosphere and plasmasphere leads to a strengthening of the model underestimation of the ground-based TEC values. We demonstrated that the major source of the model-data discrepancies in the EC/TEC domain comes from the topside ionosphere/plasmasphere system.  相似文献   

20.
利用嫦娥三号极紫外相机观测的2014年2月21日等离子体层极紫外对数图像,分析了一系列磁活动状态下等离子体层晨侧视角的演化.由等离子体层质子的相空间分布,模拟了 2014年2月18-22日发生一系列磁暴事件时等离子体层在磁赤道面的演化.通过观测与模拟发现,等离子体层实际的填充速度大于模拟时等离子体层的填充速度.推测昏侧...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号