首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ETALON spin period determination from kHz SLR data   总被引:1,自引:1,他引:0  
Using kHz Satellite LASER Ranging (SLR) data of the SLR station Graz only, we determined the spin periods of the two ETALON satellites – launched into high orbits of about 20,000 km – and their spin period increase during 3 years. The determined spin period values and spin period increase rates at 2004-01-01 are: TET1 = 63 s + 0.484 s/year, and TET2 = 65.5 s + 0.401 s/year.  相似文献   

2.
The Graz 2 kHz Satellite Laser Ranging (SLR) measurements allow determination of the spin axis orientation of the geodetic satellite Ajisai. The high repetition rate of the laser makes it possible to determine the epoch time when the laser is pointing directly between two corner cube reflector (CCR) rings of the satellite. Identification of many such events during a few (up to 3) consecutive passes allows to state the satellite orientation in the celestial coordinate system. Six years of 2 kHz SLR data (October 2003–October 2009) delivered 331 orientation values which clearly show precession of the axis along a cone centered at 14h56m2.8s in right ascension and 88.512° in declination (J2000.0 celestial reference frame) and with an half-aperture angle θ of 1.405°. The spin axis precesses with a period of 117 days, which is equal to the period of the right ascension of the ascending node of Ajisai’s orbit. We present a model of the axis precession which allows prediction of the satellite orientation – necessary for the envisaged laser time transfer via Ajisai mirrors.  相似文献   

3.
Satellite Laser Ranging (SLR) stations measure distance to the satellites equipped with Corner Cube Reflectors (CCRs). These range measurements contain information about spin parameters of the spacecraft. In this paper we present results of spin period determination of two passive satellites from SLR data only: 10 years of LAGEOS-1 (10426 values), and 15 years of LAGEOS-2 (15580 values). The measurements have been made by standard 10 Hz SLR systems and the first 2 kHz SLR system from Graz (Austria). The obtained data allowed calculation of the initial spin period of the satellites: 0.61 s for LAGEOS-1 and 0.906 s for LAGEOS-2. Long time series of the spin period values show that the satellite’s slowing down rate is not constant but is oscillating with a period of 846 days for LAGEOS-1 and 578 days for LAGEOS-2. The results presented here definitely prove that the SLR is a very efficient technique able to measure spin period of the geodetic satellites.  相似文献   

4.
The nanosatellite BLITS (Ball Lens In The Space) is the first object designed as a passive, spherical retroreflector of the Luneburg type, dedicated for Satellite Laser Ranging (SLR). The 2 kHz SLR station Graz measures spin parameters of this satellite, providing information about the rotational dynamics of the body. The measurements obtained during the period from September 26, 2009 to November 24, 2010 show a significant change of the spin configuration. The spin axis was dynamically precessing since the launch and currently is sinus-like behaving between coordinates RA 120°…150°, Dec 30°…60° (J2000 inertial reference frame). The angle between the symmetry axis and the spin axis of BLITS is not constant, but is decreasing since the launch, while its spin period is rather stable with a mean value of 5.613 s (clockwise rotation). The satellite was dynamically changing its attitude during the first three months after deployment; after this time the spin parameters are relatively stable.  相似文献   

5.
The nanosatellite BLITS (Ball Lens In The Space) demonstrates a successful design of the new spherical lens type satellite for Satellite Laser Ranging (SLR). The spin parameters of the satellite were calculated from more than 1000 days of SLR data collected from 6 High Repetition Rate (HRR) systems: Beijing, Changchun, Graz, Herstmonceux, Potsdam, Shanghai.  相似文献   

6.
The nanosatellite BLITS (Ball Lens In The Space) is the first object designed as a passive, spherical retroreflector of the Luneburg type, dedicated for Satellite Laser Ranging (SLR). The optical response of BLITS has been measured by the Graz 2 kHz SLR station and compared with the response of the classical retroreflector arrays (RRA) of the Low Earth Orbiting satellites such as ERS-2 and Stella. This work demonstrates that the optical response of BLITS is flat and featureless, comparable with the signature of a point-source or a flat target, and suggests that this innovative design will deliver a higher normal point (NP) accuracy (2.55 mm) than any other SLR target currently in orbit. The high reflectivity of the glassy BLITS (about 60% of the return rate from the multi-reflector Stella) is found to be decreasing by about 30% per year, probably due to the solar irradiation. Detailed analysis of the reflective half-shell demonstrates that a high return rate of SLR measurements can be achieved regardless of the incident angle of the laser beam, thus making the spherical lens a perfect successor of the classical RRA panels mounted on active satellites such as CHAMP, GOCE and GRACE.  相似文献   

7.
The high repetition rate Satellite Laser Ranging (SLR) system developed in Graz, Austria, measures ranges to the High Earth Orbiting satellites Etalon-1 and Etalon-2 with the millimeter accuracy. The 2 kHz repetition rate of the laser and the relatively high return rates allow to use the SLR data to calculate the spin parameters of the Etalon satellites. The analysis of the 10 years (October 2003–September 2013) of the SLR data gives trends of the spin axes orientation (J2000 Inertial Reference Frame):  相似文献   

8.
The design of the retroreflector array (RRA) of the fast spinning Experimental Geodetic Satellite (Ajisai) allows to determine orientation of its spin axis by means of frequency analysis. Moving spectral analysis (MSA) of the simulated Satellite Laser Ranging (SLR) data gives information about frequencies which can be obtained for the whole range of the incident angle between the laser beam vector and the spin axis of the spacecraft. This frequency signal changes as the incident laser beam crosses consecutive rings of the RRA.  相似文献   

9.
In this paper we present results for the global elastic parameters: Love number h2 and Shida number l2 derived from the analysis of Satellite Laser Ranging (SLR) data. SLR data for the two low satellites STELLA (H = 800 km) and STARLETTE (H = 810 km) observed during 2.5 years from January 3, 2005 until July 1, 2007 with 18 globally distributed ground stations were analyzed. The analysis was done separately for the two satellites. We do a sequential analysis and study the stability and convergence of the estimates as a function of length of the data set used.  相似文献   

10.
Satellite Laser Ranging (SLR) is a powerful technique able to measure spin rate and spin axis orientation of the fully passive, geodetic satellites. This work presents results of the spin determination of LARES – a new satellite for testing General Relativity. 529 SLR passes measured between February 17 and June 9, 2012, were spectrally analyzed. Our results indicate that the initial spin frequency of LARES is f0 = 86.906 mHz (RMS = 0.539 mHz). A new method for spin axis determination, developed for this analysis, gives orientation of the axis at RA = 12h22m48s (RMS = 49m), Dec = −70.4° (RMS = 5.2°) (J2000.0 celestial reference frame), and the clockwise (CW) spin direction. The half-life period of the satellite’s spin is 214.924 days and indicates fast slowing down of the spacecraft.  相似文献   

11.
目前普遍使用TLE数据进行在轨物体的危险交会预报. TLE数据误差不仅会影响交会预报的准确性, 还是计算碰撞概率的必要参数, 因此, 只有准确估计TLE数据误差, 才能得到可信的碰撞概率数值. 本文采用两种方法, 即TLE数据自比和与高精度轨道预报数据相比较的方法, 计算TLE数据误差, 并分别利用TLE数据和高精度数据计算同一交会, 比较两种数据预报的交会结果差异. 结果表明, 采用TLE根数自比方法的计算误差偏小, 而使用精轨数据作为校准数据所得到的TLE误差更接近真实误差, 计算碰撞概率更为合理, 有利于减少虚警.  相似文献   

12.
Beidou is the regional satellite navigation system in China, consisting of three kinds of orbiting satellites, MEO, GEO and IGSO, with the orbital altitudes of 21500–36000 km. For improving the accuracy of satellites orbit determination, calibrating microwave measuring techniques and providing better navigation service, all Beidou satellites are equipped with laser retro-reflector arrays (LRAs) to implement high precision laser ranging. The paper presents the design of LRAs for Beidou navigation satellites and the method of inclined installation of LRAs for GEO satellites to increase the effective reflective areas for the regional ground stations. By using the SLR system, the observations for Beidou satellites demonstrated a precision of centimeters. The performances of these LRAs on Beidou satellites are very excellent.  相似文献   

13.
Satellite Laser Ranging (SLR) measurements contain information about the spin parameters of the fully passive, geodetic satellites. In this paper we spectrally analyze the SLR data of 5 geodetic satellites placed on the Low Earth Orbits: GFZ-1, WESTPAC, Larets, Starlette, Stella, and successfully retrieve the frequency signal from Larets and Stella only. The obtained signals indicate an exponential increase of the spin period of Larets: T = 0.860499·exp(0.0197066·D) [s], and Stella: T = 13.5582·exp(0.00431232·D) [s], where D is in days since launch. The initial spin periods calculated from the first month of the SLR observations are: Larets: Tinitial = 0.8239 s, Stella: Tinitial = 13.2048 s. Analysis of the apparent effects indicates the counter-clockwise spin direction of the satellites. The twice more heavy Stella lost its rotational energy more than four times slower than Larets. Fitting the spin model to the observed spin trends allows determination of the spin axis orientation evolution for Larets and Stella before their rotational period becomes equal to the orbital period.  相似文献   

14.
The navigation and geodetic satellites that orbit the Earth at altitudes of approximately 20,000 km are tracked routinely by many of the Satellite Laser Ranging (SLR) stations of the International Laser Ranging Service (ILRS). In order to meet increasing demands on SLR stations for daytime and nighttime observations, any new mission needs to ensure a strong return signal so that the target is easily acquirable. The ILRS has therefore set a minimum effective cross-section of 100 million square metres for the on-board laser retro-reflector arrays (LRAs) and further recommends the use of ‘uncoated’ cubes in the arrays. Given the large number of GNSS satellites that are currently supported by SLR, it is informative to make an assessment of the relative efficiencies of the various LRAs employed. This paper uses the laser ranging observations themselves to deduce and then compare the efficiencies of the LRAs on the COMPASS-M1 navigation satellite, two satellites from the GPS and three from the GLONASS constellations, the two GIOVE test satellites from the upcoming Galileo constellation, the two Etalon geodetic spheres and the geosynchronous communications test satellite, ETS-8. All the LRAs on this set of satellites employ back-coated retro-reflector cubes, except those on the COMPASS-M1 and ETS-8 vehicles which are uncoated. A measure of return signal strength, and thus of LRA-efficiency, is calculated using the laser-range full-rate data archive from 2007 to 2010, scaled to remove the effects of variations in satellite range, atmospheric attenuation and retro-reflector target total surface area. Observations from five SLR stations are used in this study; they are Herstmonceux (UK), Yarragadee (Australia), Monument Peak and McDonald (USA) and Wettzell (Germany). Careful consideration is given to the treatment of the observations from each station in order to take account of local working practices and system upgrades. The results show that the uncoated retro-reflector cubes offer significant improvements in efficiency.  相似文献   

15.
The Satellite Laser Ranging (SLR) technology is used to accurately determine the position of space objects equipped with so-called retro-reflectors or retro-reflector arrays (RRA). This type of measurement allows to measure the range to the spacecraft with high precision, which leads to determination of very accurate orbits for these targets. Non-active spacecraft, which are not attitude controlled any longer, tend to start to spin or tumble under influence of the external and internal torques and forces.If the return signal is measured for a non-spherical non-active rotating object, the signal in the range residuals with respect to the reference orbit is more complex. For rotating objects the return signal shows an oscillating pattern or patterns caused by the RRA moving around the satellite’s centre of mass. This behaviour is projected onto the radial component measured by the SLR.In our work, we demonstrate how the SLR ranging technique from one sensor to a satellite equipped with a RRA can be used to precisely determine its spin motion during one passage. Multiple SLR measurements of one target over time allow to accurately monitor spin motion changes which can be further used for attitude predictions. We show our solutions of the spin motion determined for the non-active ESA satellite Envisat obtained from measurements acquired during years 2013–2015 by the Zimmerwald SLR station, Switzerland. All the necessary parameters are defined for our own so-called point-like model which describes the motion of a point in space around the satellite centre of mass.  相似文献   

16.
The positions and velocities of the four Satellite Laser Ranging (SLR) stations: Yarragadee (7090), Greenbelt (7105), Graz (7839) and Herstmonceux (7840) from 5-year (2001–2005) SLR data of low orbiting satellites (LEO): Ajisai, Starlette and Stella were determined. The orbits of these satellites were computed from the data provided by 20 SLR stations. All orbital computations were performed by means of NASA Goddard’s GEODYN-II program. The geocentric coordinates were transformed to the topocentric North–South, East–West and Vertical components in reference to ITRF2005. The influence of the number of normal points per orbital arc and the empirical acceleration coefficients on the quality of station coordinates was studied. To get standard deviation of the coordinates determination lower than 1 cm, the number of the normal points per site had to be greater than 50. The computed positions and velocities were compared to those derived from LAGEOS-1/LAGEOS-2 data. Three parameters were used for this comparison: station coordinates stability, differences from ITRF2005 positions and velocities. The stability of coordinates of LEO satellites is significantly worse (17.8 mm) than those of LAGEOS (7.6 mm), the better results are for Ajisai (15.4 mm) than for Starlette/Stella (20.4 mm). The difference in positions between the computed values and ITRF2005 were little bit worse for Starlette/Stella (6.6 mm) than for LAGEOS (4.6 mm), the results for Ajisai were five times worse (29.7 mm) probably due to center of mass correction of this satellite. The station velocities with some exceptions were on the same level (≈1 mm/year) for all satellites. The results presented in this work show that results from Starlette/Stella are better than those from Ajisai for station coordinates determination. We can applied the data from LEO satellites, especially Starlette and Stella for determination of the SLR station coordinates but with two times lower accuracy than when using LAGEOS data.  相似文献   

17.
We present results for the global elastic parameters h2 and l2 derived from the analysis of Satellite Laser Ranging (SLR) data. SLR data for the two satellites LAGEOS 1 and LAGEOS 2 observed during 2.5 years from January 3, 2005 until July 1, 2007 with 18 globally distributed ground stations were analysed using different approaches. The analysis was done separately for the two satellites and approaches to estimate the two elastic parameters independently and together were performed. We do a sequential analysis and study the stability of the estimates as a function of length of the data set used. The adjusted final values for h2 equal to 0.6151 ± 0.0008 and 0.6152 ± 0.0008, and those for l2 equal to 0.0886 ± 0.0003 and 0.0881 ± 0.0003 for LAGEOS 1 and LAGEOS 2 tracking data are compared to other independently derived estimates. These parameters and their errors achieve stability at about the 24 and 27 month time interval for h2 and l2, respectively.  相似文献   

18.
To investigate the precursory signature of earthquakes on low frequency (LF) signal propagation, six earthquakes, having magnitude greater than equal to 6.5 and depth less than equal to 30 km, are being studied. The base line level of 40 kHz signal, transmitted from JJY station, Japan, is analysed with respect to Vd statistical parameter. Results show that the Vd parameter values starts fluctuating from its ambient levels before and during the days of the earthquakes, with significant variation starting 1–3 days prior to the earthquake concerned. This present study is an approach for identifying the precursory signatures of earthquakes on LF signal propagation using a new methodology with Vd parameter.  相似文献   

19.
Attitude is the important parameter for active debris removal and collision avoidance. This paper deduced the spin axis orientation and spin period of the rocket body, CZ-3B R/B (NORAD ID 38253), using the satellite laser ranging and light curve data measured with single-photon detector at Graz station. The epoch method and LC & SLR residuals fitting were combined to determine these values. The derived right ascension angle was around 220°, the declination angle was near 64° and the sidereal period was calculated to be 117.724 s, for 2017-07-03. The results derived from the two distinct methods were mutually validated. Rocket bodies are a major contributor to space debris and this work provides a reference for attitude determination and attitude modelling.  相似文献   

20.
High-precision time synchronization between satellites and ground stations plays the vital role in satellite navigation system. Laser time transfer (LTT) technology is widely recognized as the highest accuracy way to achieve time synchronization derived from satellite laser ranging (SLR) technology. Onboard LTT payload has been designed and developed by Shanghai Astronomical Observatory, and successfully applied to Chinese Beidou navigation satellites. By using the SLR system, with strictly controlling laser firing time and developing LTT data processing system on ground, the high precise onboard laser time transfer experiment has been first performed for satellite navigation system in the world. The clock difference and relative frequency difference between the ground hydrogen maser and space rubidium clocks have been obtained, with the precision of approximately 300 ps and relative frequency stability of 10E−14. This article describes the development of onboard LTT payload, introduces the principle, system composition, applications and LTT measuring results for Chinese satellite navigation system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号