共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Samy El-Jaby Brent J. Lewis Leena Tomi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The International Space Station Cosmic Radiation Exposure Model (ISSCREM) has been developed as a possible tool for use in radiation mission planning as based on operational data collected with a tissue equivalent proportional counter (TEPC) aboard the ISS since 2000. It is able to reproduce the observed trapped radiation and galactic cosmic radiation (GCR) contributions to the total dose equivalent to within ±20% and ±10%, respectively, as would be measured by the onboard TEPC at the Zvezda Service Module panel 327 (SM-327). Furthermore, when these contributions are combined, the total dose equivalent that would be measured at this location is estimated to within ±10%. The models incorporated into ISSCREM correlate the GCR dose equivalent rate to the cutoff rigidity magnetic shielding parameter and the trapped radiation dose equivalent rate to atmospheric density inside the South Atlantic Anomaly. The GCR dose equivalent rate is found to vary minimally with altitude and TEPC module location however, due to the statistics and data available, the trapped radiation model could only be developed for the TEPC located at SM-327. Evidence of the variation in trapped radiation dose with detector orientation and the East–West asymmetry were observed at this location. 相似文献
3.
T.C. Slaba S.R. Blattnig M.S. Clowdsley S.A. Walker F.F. Badavi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
Long-term human presence in space requires the inclusion of radiation constraints in mission planning and the design of shielding materials, structures and vehicles. It is necessary to expose the numerical tools commonly used in radiation analyses to extensive verification, validation and uncertainty quantification. In this paper, the numerical error associated with energy discretization in HZETRN is addressed. An inadequate numerical integration scheme in the transport algorithm is shown to produce large errors in the low energy portion of the neutron and light ion fluence spectra. It is further shown that the errors result from the narrow energy domain of the neutron elastic cross section spectral distributions and that an extremely fine energy grid is required to resolve the problem under the current formulation. Since adding a sufficient number of energy points will render the code computationally inefficient, we revisit the light ion and neutron transport theory developed for HZETRN and focus on neutron elastic interactions. Two numerical methods (average value and collocation) are developed to provide adequate resolution in the energy domain and more accurately resolve the neutron elastic interactions. An energy grid convergence study is conducted to demonstrate the improved stability of the new methods. Based on the results of the convergence study and the ease of implementation, the average value method with a 100 point energy grid is found to be suitable for future use in HZETRN. 相似文献
4.
Tony C. Slaba Steve R. Blattnig Francis F. Badavi Nicholas N. Stoffle Robert D. Rutledge Kerry T. Lee E. Neal Zapp Tsvetan P. Dachev Borislav T. Tomov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
Measurements taken in Low Earth Orbit (LEO) onboard the International Space Station (ISS) and transit vehicles have been extensively used to validate radiation transport models. Primarily, such comparisons were done by integrating measured data over mission or trajectory segments so that individual comparisons to model results could be made. This approach has yielded considerable information but is limited in its ability to rigorously quantify and differentiate specific model errors or uncertainties. Further, as exploration moves beyond LEO and measured data become sparse, the uncertainty estimates derived from these validation cases will no longer be applicable. Recent improvements in the underlying numerical methods used in HZETRN have resulted in significant decreases in code run time. Therefore, the large number of comparisons required to express error as a function of a physical quantity, like cutoff rigidity, are now possible. Validation can be looked at in detail over any portion of a flight trajectory (e.g. minute by minute) such that a statistically significant number of comparisons can be made. This more rigorous approach to code validation will allow the errors caused by uncertainties in the geometry models, environmental models, and nuclear physics models to be differentiated and quantified. It will also give much better guidance for future model development. More importantly, it will allow a quantitative means of extrapolating uncertainties in LEO to free space. In this work, measured data taken onboard the ISS during solar maximum are compared to results obtained with the particle transport code HZETRN. Comparisons are made at a large number (∼77,000) of discrete time intervals, allowing error estimates to be given as a function of cutoff rigidity. It is shown that HZETRN systematically underestimates exposure quantities at high cutoff rigidity. The errors are likely associated with increased angular variation in the geomagnetic field near the equator, the lack of pion production in HZETRN, and errors in high energy nuclear physics models, and will be the focus of future work. 相似文献
5.
Francis F. Badavi Daniel O. Adams John W. Wilson 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
The origin of the aluminum equivalent shield approximation in space radiation analysis can be traced back to its roots in the early years of the NASA space programs (Mercury, Gemini and Apollo) wherein the primary radiobiological concern was the intense sources of ionizing radiation causing short term effects which was thought to jeopardize the safety of the crew and hence the mission. Herein, it is shown that the aluminum equivalent shield approximation, although reasonably well suited for that time period and to the application for which it was developed, is of questionable usefulness to the radiobiological concerns of routine space operations of the 21st century which will include long stays onboard the International Space Station (ISS) and perhaps the moon. This is especially true for a risk based protection system, as appears imminent for deep space exploration where the long-term effects of Galactic Cosmic Ray (GCR) exposure is of primary concern. The present analysis demonstrates that sufficiently large errors in the interior particle environment of a spacecraft result from the use of the aluminum equivalent approximation, and such approximations should be avoided in future astronaut risk estimates. In this study, the aluminum equivalent approximation is evaluated as a means for estimating the particle environment within a spacecraft structure induced by the GCR radiation field. For comparison, the two extremes of the GCR environment, the 1977 solar minimum and the 2001 solar maximum, are considered. These environments are coupled to the Langley Research Center (LaRC) deterministic ionized particle transport code High charge (Z) and Energy TRaNsport (HZETRN), which propagates the GCR spectra for elements with charges (Z) in the range 1 ? Z ? 28 (H–Ni) and secondary neutrons through selected target materials. The coupling of the GCR extremes to HZETRN allows for the examination of the induced environment within the interior of an idealized spacecraft as approximated by a spherical shell shield, and the effects of the aluminum equivalent approximation for a good polymeric shield material such as generic polyethylene (PE). The shield thickness is represented by a 25 g/cm2 spherical shell. Although, one could imagine the progression to greater thickness, the current range will be sufficient to evaluate the qualitative usefulness of the aluminum equivalent approximation. Upon establishing the inaccuracies of the aluminum equivalent approximation through numerical simulations of the GCR radiation field attenuation for PE and aluminum equivalent PE spherical shells, we further present results for a limited set of commercially available, hydrogen rich, multifunctional polymeric constituents to assess the effect of the aluminum equivalent approximation on their radiation attenuation response as compared to the generic PE. 相似文献
6.
R A Nymmik M I Panasyuk T I Pervaya A A Suslov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(10):759-763
The present paper analyses the problems of modeling galactic cosmic ray particle fluxes. A model representation which enables the particle energy spectra for large-scale solar activity induced modulations to be calculated is described. 相似文献
7.
Salih Alcay Gurkan Oztan 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(10):3200-3212
The International Reference Ionosphere (IRI) empirical model provides valuable data for many fields including space and navigation applications. Since the IRI model gives the ionospheric parameters in the altitude range from 50?km to 2000?km, researchers focused on the IRI-PLAS model which is the plasmasphere extension of the IRI model. In this study, Total Electron Content (TEC) prediction performance of the IRI-PLAS model was examined at a global scale using the location of globally distributed 9 IGS stations. Besides the long term (01.01.2015–31.12.2015) behavior of the model, TEC predictions during the equinox and solstice days of 2014–2017 were also tested. IRI-PLAS-TEC values were examined in comparison with GPS-TEC data. Hourly interval of yearly profile exhibits that when the geomagnetic and solar active days are ignored, differences between IRI-PLAS-TEC and GPS-TEC are rather small (~2–3 TECU) at stations in the northern hemisphere, generally ~4–5 TECU level at the southern hemisphere stations and reaching above 10 TECU for few hours. While the IRI-PLAS-TEC generally overestimates the GPS-TEC at southern hemisphere stations during quiet days, the model-derived TEC underestimates GPS-TEC during solar active days. IRI-PLAS-TEC and GPS-TEC values exhibit similar trend for the equinoxes 21 March and 23 September which refer equivalent conditions. 相似文献
8.
T. Sato A. Endo K. Niita 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
For the estimation of the radiation risk for astronauts, not only the organ absorbed doses but also their mean quality factors must be evaluated. Three functions have been proposed by different organizations for expressing the radiation quality, including the Q(L), Q(y), and QNASA(Z, E) relationships as defined in International Committee of Radiological Protection (ICRP) Publication 60, International Commission on Radiation Units and Measurements (ICRU) Report 40, and National Aeronautics and Space Administration (NASA) TP-2011-216155, respectively. The Q(L) relationship is the most simple and widely used for space dosimetry, but the use of the latter two functions enables consideration of the difference in the track structure of various charged particles during the risk estimation. 相似文献
9.
Mosbeh R. Kaloop Mosaruf Hussan Dookie Kim 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(11):3505-3521
This study aims at assessing the safety behavior of the Incheon long-span bridge using high rate (10?Hz) geodetic monitoring global positioning system (GPS). The time series of wavelet spectrum analysis is utilized to assess the dynamic behavior of the bridge. The coefficients and model errors of the time series autoregressive-moving average (ARMA) model are used to evaluate the movement performances of the bridge. The results show that: (i) the accuracy of GPS measurements to extract the dynamic behavior of the bridge is 97.27% when compared with the design results. (ii) the behavior of the bridge is within the safety limits of the bridge design with minimum observed changes for the historical GPS measurements in time and frequency domains, the mean deflection of bridge deck is 8.26?mm and frequency changes of bridge is 0.004?Hz compared with the design results. (iii) the time series analysis of the wavelet spectrum and ARMA model coefficients can be used to detect the significant frequency changes and study the rigidity of the bridge performance, respectively; and the both methods are found to be suitable techniques to estimate the performance changes of the GPS measurements in the time and frequency domains during the monitoring time period. 相似文献
10.
Xiukuan Zhao Baiqi Ning Libo Liu Gangbing Song 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
In this paper, the AdaBoost-BP algorithm is used to construct a new model to predict the critical frequency of the ionospheric F2-layer (foF2) one hour ahead. Different indices were used to characterize ionospheric diurnal and seasonal variations and their dependence on solar and geomagnetic activity. These indices, together with the current observed foF2 value, were input into the prediction model and the foF2 value at one hour ahead was output. We analyzed twenty-two years’ foF2 data from nine ionosonde stations in the East-Asian sector in this work. The first eleven years’ data were used as a training dataset and the second eleven years’ data were used as a testing dataset. The results show that the performance of AdaBoost-BP is better than those of BP Neural Network (BPNN), Support Vector Regression (SVR) and the IRI model. For example, the AdaBoost-BP prediction absolute error of foF2 at Irkutsk station (a middle latitude station) is 0.32 MHz, which is better than 0.34 MHz from BPNN, 0.35 MHz from SVR and also significantly outperforms the IRI model whose absolute error is 0.64 MHz. Meanwhile, AdaBoost-BP prediction absolute error at Taipei station from the low latitude is 0.78 MHz, which is better than 0.81 MHz from BPNN, 0.81 MHz from SVR and 1.37 MHz from the IRI model. Finally, the variety characteristics of the AdaBoost-BP prediction error along with seasonal variation, solar activity and latitude variation were also discussed in the paper. 相似文献
11.
S. Kodaira R.V. Tolochek I. Ambrozova H. Kawashima N. Yasuda M. Kurano H. Kitamura Y. Uchihori I. Kobayashi H. Hakamada A. Suzuki I.S. Kartsev E.N. Yarmanova I.V. Nikolaev V.A. Shurshakov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The dose reduction effects for space radiation by installation of water shielding material (“protective curtain”) of a stack board consisting of the hygienic wipes and towels have been experimentally evaluated in the International Space Station by using passive dosimeters. The averaged water thickness of the protective curtain was 6.3 g/cm2. The passive dosimeters consisted of a combination of thermoluminescent detectors (TLDs) and plastic nuclear track detectors (PNTDs). Totally 12 passive dosimeter packages were installed in the Russian Service Module during late 2010. Half of the packages were located at the protective curtain surface and the other half were at the crew cabin wall behind or aside the protective curtain. The mean absorbed dose and dose equivalent rates are measured to be 327 μGy/day and 821 μSv/day for the unprotected packages and 224 μGy/day and 575 μSv/day for the protected packages, respectively. The observed dose reduction rate with protective curtain was found to be 37 ± 7% in dose equivalent, which was consistent with the calculation in the spherical water phantom by PHITS. The contributions due to low and high LET particles were found to be comparable in observed dose reduction rate. The protective curtain would be effective shielding material for not only trapped particles (several 10 MeV) but also for low energy galactic cosmic rays (several 100 MeV/n). The properly utilized protective curtain will effectively reduce the radiation dose for crew living in space station and prolong long-term mission in the future. 相似文献
12.
Ralph D. Lorenz 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(7):2219-2230
Winds near the ground on Titan for the Dragonfly landing site (near Selk crater, 10°N) for the mid-2030s (Titan late southern summer, Ls ~ 310°) are estimated for mission design purposes. Prevailing winds due to the global circulation are typically 0.5 m/s, and do not exceed 1 m/s. Local terrain-induced flows such as slope winds appear to be similarly capped at 1 m/s. At various landing sites and times, these two contributions will vectorially combine to yield steady winds (for part of a Titan day, Tsol) of up to 2.0 m/s, but typically less – the slope wind component will be small in the mid-morning. In early afternoon, as on Earth and Mars, solar-driven convection in the planetary boundary layer will cause wind fluctuations of the order of 0.1 m/s, varying with a typical timescale of ~1000 s. Occasionally this convection organizes into coherent ‘dust devil’ vortices: detectable vortices with speeds of 1 m/s are predicted about once per Titan day. We have introduced the convective velocity scale combined with the advection time of PBL cells as a metric to derive the frequency of occurrence of gusts associated with convective vortices (‘dust devils’). Maximum possible vortex winds on Titan of 2.8 m/s may be expected only once per 40 Tsols, and define the maximum wind (4.8 m/s at 10 m height) that Dragonfly must tolerate without damage. The applicability of different wind combinations, scaled to the height of relevant Dragonfly components above the ground (e.g. the maximum corresponds to 3.9 m/s at 1.3 m height) by a logarithmic wind profile, to Dragonfly design and operations are discussed. 相似文献
13.
P. Sibanda L.A. McKinnell 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
The representation of the topside ionosphere (the region above the F2 peak) is critical because of the limited experimental data available. Over the years, a wide range of models have been developed in an effort to represent the behaviour and the shape of the electron density (Ne) profile of the topside ionosphere. Various studies have been centred around calculating the vertical scale height (VSH) and have included (a) obtaining VSH from Global Positioning System (GPS) derived total electron content (TEC), (b) calculating the VSH from ground-based ionosonde measurements, (c) using topside sounder vertical Ne profiles to obtain the VSH. One or a combination of the topside profilers (Chapman function, exponential function, sech-squared (Epstein) function, and/or parabolic function) is then used to reconstruct the topside Ne profile. The different approaches and the modelling techniques are discussed with a view to identifying the most adequate approach to apply to the South African region’s topside modelling efforts. The IRI-2001 topside model is evaluated based on how well it reproduces measured topside profiles over the South African region. This study is a first step in the process of developing a South African topside ionosphere model. 相似文献
14.
T.P. Dachev 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
Comprehensive study of the dose, flux and deposited energy spectra shape data obtained by Liulin type spectrometers on spacecraft (five different experiments) and aircraft since 2001 is performed with the aim of understanding how well these parameters can characterize the type of predominant particles and their energy in the near Earth radiation environment. Three different methods for characterisation of the incoming radiation from Liulin spectrometers are described. The results revealed that the most informative one is by the shape of the deposited energy spectra. Spectra generated by Galactic Cosmic Rays (GCR) protons and their secondaries are with linear falling shape in the coordinates deposited energy/deposited per channel dose rate. The position of the maximum of the deposited energy spectra inside the South Atlantic Anomaly (SAA) region depends on the incident energy of the incoming protons. Spectra generated by relativistic electrons in the outer radiation belt have a maximum in the first channels. For higher energy depositions these spectra are similar to the GCR spectra. Mixed radiation by protons and electrons and/or bremsstrahlung is characterized by spectra with 2 maxima. All type of spectra has a knee close to 6.2 MeV deposited energy, which correspond to the stopping energy of protons in the detector. Dose to flux ratio known also as specific dose is another high information parameter, which is given by experimentally obtained formulae [Heffner, J. Nuclear radiation and safety in space. M. Atomizdat. 115, 1971 (in Russian)] connecting the dose to flux ratio and the incident energy of the particles. 相似文献
15.
R. Harikumar S. SampathV. Sasi Kumar 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
A Joss–Waldvogel impact type disdrometer was installed at four different locations in the Indian peninsula during various periods from 2001 till date. The data are analysed to study the nature of rain drop size distribution (DSD) in this region. Out of the three well known distributions that describe DSD, namely, the Marshall–Palmer, Gamma and Lognormal, it has been found that Lognormal distribution fits the DSD in this region better than the other ones. Lognormal distributions for different rain rates were then derived by fitting the lognormal function to the data using a curve fitting software. Then the variation of fit parameters with rain rate was evaluated. Incorporating these variations, into the Lognormal distribution, an empirical equation that describes the DSD in this region for different rain rates was derived. Then this equation was tested with sample data from each of these stations. The data used for validation were not used for fitting lognormal equation to derive the fit parameters. The correlation between the DSD measured and derived using the empirical model was found to be quite good (0.9) except in some cases where the coefficient dropped to 0.75. The empirical model can be updated when more data are available. 相似文献
16.
J. Semkova R. Koleva St. Maltchev N. Bankov V. Benghin I. Chernykh V. Shurshakov V. Petrov S. Drobyshev I. Nikolaev 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
The Liulin-5 experiment is a part of the international project MATROSHKA-R on the Russian segment of the ISS, which uses a tissue-equivalent spherical phantom equipped with a set of radiation detectors. The objective of the MATROSHKA-R project is to provide depth dose distribution of the radiation field inside the sphere in order to get more information on the distribution of dose in a human body. Liulin-5 is a charged particle telescope using three silicon detectors. It measures time resolved energy deposition spectra, linear energy transfer (LET) spectra, particle flux, and absorbed doses of electrons, protons and heavy ions, simultaneously at three depths along the radius of the phantom. Measurements during the minimum of the solar activity in cycle 23 show that the average absorbed daily doses at 40 mm depth in the phantom are between 180 μGy/day and 220 μGy/day. The absorbed doses at 165 mm depth in the phantom decrease by a factor of 1.6–1.8 compared to the doses at 40 mm depth due to the self-shielding of the phantom from trapped protons. The average dose equivalent at 40 mm depth is 590 ± 32 μSV/day and the galactic cosmic rays (GCR) contribute at least 70% of the total dose equivalent at that depth. Shown is that due to the South Atlantic Anomaly (SAA) trapped protons asymmetry and the direction of Liulin-5 lowest shielding zone the dose rates on ascending and descending nodes in SAA are different. The data obtained are compared to data from other radiation detectors on ISS. 相似文献
17.
B. Andonov P. MukhtarovD. Pancheva 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The paper presents an empirical model of the total electron content (TEC) response to the geomagnetic activity described by the Kp-index. The model is built on the basis of TEC measurements covering the region of North America (50°W–150°W, 10°N–60°N) for the period of time between October 2004 and December 2009. By using a 2D (latitude-time) cross-correlation analysis it is found that the ionospheric response to the geomagnetic activity over the considered geographic region and at low solar activity revealed both positive and negative phases of response. The both phases of the ionospheric response have different duration and time delay with respect to the geomagnetic storm. It was found that these two parameters of the ionospheric response depend on the season and geographical latitude. The presence of two phases, positive and negative, of the ionospheric response imposed the implementation of two different time delay constants in order to properly describe the two different delayed reactions. The seasonal dependence of the TEC response to geomagnetic storms is characterized by predominantly positive response in winter with a short (usually ∼5–6 h) time delay as well as mainly negative response in summer with a long (larger than 15 h) time delay. While the TEC response in March and October is more close to the winter one the response in April and September is similar to the summer one. 相似文献
18.
J. Šmilauer V.V. Afonin 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1985,5(7):69-72
On the basis of systematic electron temperature measurements onboard the Interkosmos-19 satellite, an experimental global model of electron temperature Te has been constructed; namely, a set of samples representing 10 intervals of measured Te, accompanied by values of the geographic longitude, solar zenith angle, season of the year, Covington index, Dst and Kp, grouped according to the invariant latitude, geomagnetic time and altitude. On the basis of the experimental model, the coefficients of the empirical models for the summer and winter seasons, for geophysically quiet conditions, and for heights of 520, 600, 920 and 1000 km are calculated. For heights of 680, 760 and 840 km with fewer data available, the coefficients are provisional. 相似文献
19.
Yu.P. Koshelkov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1983,3(1):3-16
Available rocketsonde information has been used to compile tables of monthly mean temperature, pressure, density and zonal wind for the middle atmosphere of the southern hemisphere with the purpose of revising similar tables presented to COSPAR earlier. The altitude range is 25 to 80 km in steps of 5 km. The latitude range is 0° to 70°S with a 10° step. The compatability of different sets of temperature measurements is discussed. Mean values of temperature, pressure and zonal wind obtained for the southern hemisphere are compared with northern hemisphere model values. Large differences between the hemispheres (up to 20°C in temperature, 20–30% in pressure, 30–50 m/s in wind) imply that reference atmospheres such as CIRA should be complemented by southern hemisphere climatology. 相似文献
20.
Chuang Shi Shengfeng Gu Yidong Lou Maorong Ge 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
PPP with low-cost, single-frequency receivers has been receiving increasing interest in recent years because of its large amount of possible users. One crucial issue in single-frequency PPP is the mitigation of ionospheric delays which cannot be removed by combining observations on different frequencies. For this purpose, several approaches have been developed, such as, the approach using ionospheric model corrections with proper weight, the GRAPHIC (Group and Phase Ionosphere Calibration) approach, and the method to model ionospheric delays over a station with a low polynomial or stochastic process. From our investigation on the stochastic characteristics of the ionospheric delay over a station, it cannot be precisely represented by either a deterministic model in the form of a low-order polynomial or a stochastic process for each satellite, because of its strong irregular spatial and temporal variations. Therefore, a novel approach is developed accordingly in which the deterministic representation is further refined by a stochastic process for each satellite with an empirical model for its power density. Furthermore, ionospheric delay corrections from a constructed model using GNSS data are also included as pseudo-observations for a better solution. A large data set collected from about 200 IGS stations over one month in 2010 is processed with the new approach and several commonly adopted approaches for validation. The results show its significant improvements in terms of positioning accuracy and convergence time with a negligible extra processing time, which is also demonstrated by data collected with a low-cost, handheld, single-frequency receiver. 相似文献