首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The origin of the aluminum equivalent shield approximation in space radiation analysis can be traced back to its roots in the early years of the NASA space programs (Mercury, Gemini and Apollo) wherein the primary radiobiological concern was the intense sources of ionizing radiation causing short term effects which was thought to jeopardize the safety of the crew and hence the mission. Herein, it is shown that the aluminum equivalent shield approximation, although reasonably well suited for that time period and to the application for which it was developed, is of questionable usefulness to the radiobiological concerns of routine space operations of the 21st century which will include long stays onboard the International Space Station (ISS) and perhaps the moon. This is especially true for a risk based protection system, as appears imminent for deep space exploration where the long-term effects of Galactic Cosmic Ray (GCR) exposure is of primary concern. The present analysis demonstrates that sufficiently large errors in the interior particle environment of a spacecraft result from the use of the aluminum equivalent approximation, and such approximations should be avoided in future astronaut risk estimates. In this study, the aluminum equivalent approximation is evaluated as a means for estimating the particle environment within a spacecraft structure induced by the GCR radiation field. For comparison, the two extremes of the GCR environment, the 1977 solar minimum and the 2001 solar maximum, are considered. These environments are coupled to the Langley Research Center (LaRC) deterministic ionized particle transport code High charge (Z) and Energy TRaNsport (HZETRN), which propagates the GCR spectra for elements with charges (Z) in the range 1 ? Z ? 28 (H–Ni) and secondary neutrons through selected target materials. The coupling of the GCR extremes to HZETRN allows for the examination of the induced environment within the interior of an idealized spacecraft as approximated by a spherical shell shield, and the effects of the aluminum equivalent approximation for a good polymeric shield material such as generic polyethylene (PE). The shield thickness is represented by a 25 g/cm2 spherical shell. Although, one could imagine the progression to greater thickness, the current range will be sufficient to evaluate the qualitative usefulness of the aluminum equivalent approximation. Upon establishing the inaccuracies of the aluminum equivalent approximation through numerical simulations of the GCR radiation field attenuation for PE and aluminum equivalent PE spherical shells, we further present results for a limited set of commercially available, hydrogen rich, multifunctional polymeric constituents to assess the effect of the aluminum equivalent approximation on their radiation attenuation response as compared to the generic PE.  相似文献   

2.
The International Space Station Cosmic Radiation Exposure Model (ISSCREM) has been developed as a possible tool for use in radiation mission planning as based on operational data collected with a tissue equivalent proportional counter (TEPC) aboard the ISS since 2000. It is able to reproduce the observed trapped radiation and galactic cosmic radiation (GCR) contributions to the total dose equivalent to within ±20% and ±10%, respectively, as would be measured by the onboard TEPC at the Zvezda Service Module panel 327 (SM-327). Furthermore, when these contributions are combined, the total dose equivalent that would be measured at this location is estimated to within ±10%. The models incorporated into ISSCREM correlate the GCR dose equivalent rate to the cutoff rigidity magnetic shielding parameter and the trapped radiation dose equivalent rate to atmospheric density inside the South Atlantic Anomaly. The GCR dose equivalent rate is found to vary minimally with altitude and TEPC module location however, due to the statistics and data available, the trapped radiation model could only be developed for the TEPC located at SM-327. Evidence of the variation in trapped radiation dose with detector orientation and the East–West asymmetry were observed at this location.  相似文献   

3.
The HZETRN deterministic radiation code is one of several tools developed to analyze the effects of harmful galactic cosmic rays (GCR) and solar particle events on mission planning and shielding for astronauts and instrumentation. This paper is a comparison study involving the two Monte Carlo transport codes, HETC–HEDS and FLUKA and the deterministic transport code, HZETRN. Each code is used to transport an ion from the 1977 solar minimum GCR spectrum impinging upon a 20 g/cm2 aluminum slab followed by a 30 g/cm2 water slab. This research is part of a systematic effort of verification and validation to quantify the accuracy of HZETRN and determine areas where it can be improved. Comparisons of dose and dose equivalent values at various depths in the water slab are presented in this report. This is followed by a comparison of the proton and forward, backward and total neutron flux at various depths in the water slab. Comparisons of the secondary light ion 2H, 3H, 3He and 4He fluxes are also examined.  相似文献   

4.
The use of active radiation shielding designs has the potential to reduce the radiation exposure received by astronauts on deep-space missions at a significantly lower mass penalty than designs utilizing only passive shielding. Unfortunately, the determination of the radiation exposure inside these shielded environments often involves lengthy and computationally intensive Monte Carlo analysis. In order to evaluate the large trade space of design parameters associated with a magnetic radiation shield design, an analytical model was developed for the determination of flux inside a solenoid magnetic field due to the Galactic Cosmic Radiation (GCR) radiation environment. This analytical model was then coupled with NASA’s radiation transport code, HZETRN, to account for the effects of passive/structural shielding mass. The resulting model can rapidly obtain results for a given configuration and can therefore be used to analyze an entire trade space of potential variables in less time than is required for even a single Monte Carlo run. Analyzing this trade space for a solenoid magnetic shield design indicates that active shield bending powers greater than ∼15 Tm and passive/structural shielding thicknesses greater than 40 g/cm2 have a limited impact on reducing dose equivalent values. Also, it is shown that higher magnetic field strengths are more effective than thicker magnetic fields at reducing dose equivalent.  相似文献   

5.
We show that the higher range of the heliolongitudinal asymmetry of the solar wind speed in the positive polarity period (A > 0) than in the negative polarity period (A < 0) is one of the important reasons of the larger amplitudes of the 27-day variation of the galactic cosmic ray (GCR) intensity in the period of 1995–1997 (A > 0) than in 1985–1987 (A < 0). Subsequently, different ranges of the heliolongitudinal asymmetry of the solar wind speed jointly with equally important corresponding drift effect are general causes of the polarity dependence of the amplitudes of the 27-day variation of the GCR intensity. At the same time, we show that the polarity dependence is feeble for the last unusual minimum epoch of solar activity 2007–2009 (A < 0); the amplitude of the 27-day variation of the GCR intensity shows only a tendency of the polarity dependence. We present a three dimensional (3-D) model of the 27-day variation of GCR based on the Parker’s transport equation. In the 3-D model is implemented a longitudinal variation of the solar wind speed reproducing in situ measurements and corresponding divergence-free interplanetary magnetic field (IMF) derived from the Maxwell’s equations. We show that results of the proposed 3-D modeling of the 27-day variation of GCR intensity for different polarities of the solar magnetic cycle are in good agreement with the neutron monitors experimental data. To reach a compatibility of the theoretical modeling with observations for the last minimum epoch of solar activity 2007–2009 (A < 0) a parallel diffusion coefficient was increased by ∼40%.  相似文献   

6.
The proton fluxes from the low-Earth orbital satellites databases (NPOES-17 and CORONAS-F) were analyzed for the quiet geomagnetic period in April 2005. The satisfactory consent was found between the experimental and the AP8 model fluxes of the trapped protons with energy more than ∼10 MeV. At the same time, trapped proton fluxes with energy less than 10 MeV measured by LEO satellites were higher than the ones predicted by the AP8 model in the region of the SAA (drift shell L < 1.5).  相似文献   

7.
8.
Recent work has indicated that pion production and the associated electromagnetic (EM) cascade may be an important contribution to the total astronaut exposure in space. Recent extensions to the deterministic space radiation transport code, HZETRN, allow the production and transport of pions, muons, electrons, positrons, and photons. In this paper, the extended code is compared to the Monte Carlo codes, Geant4, PHITS, and FLUKA, in slab geometries exposed to galactic cosmic ray (GCR) boundary conditions. While improvements in the HZETRN transport formalism for the new particles are needed, it is shown that reasonable agreement on dose is found at larger shielding thicknesses commonly found on the International Space Station (ISS). Finally, the extended code is compared to ISS data on a minute-by-minute basis over a seven day period in 2001. The impact of pion/EM production on exposure estimates and validation results is clearly shown. The Badhwar–O’Neill (BO) 2004 and 2010 models are used to generate the GCR boundary condition at each time-step allowing the impact of environmental model improvements on validation results to be quantified as well. It is found that the updated BO2010 model noticeably reduces overall exposure estimates from the BO2004 model, and the additional production mechanisms in HZETRN provide some compensation. It is shown that the overestimates provided by the BO2004 GCR model in previous validation studies led to deflated uncertainty estimates for environmental, physics, and transport models, and allowed an important physical interaction (π/EM) to be overlooked in model development. Despite the additional π/EM production mechanisms in HZETRN, a systematic under-prediction of total dose is observed in comparison to Monte Carlo results and measured data.  相似文献   

9.
The completion of the international space station (ISS) in 2011 has provided the space research community an ideal proving ground for future long duration human activities in space. Ionizing radiation measurements in ISS form the ideal tool for the validation of radiation environmental models, nuclear transport codes and nuclear reaction cross sections. Indeed, prior measurements on the space transportation system (STS; shuttle) provided vital information impacting both the environmental models and the nuclear transport code developments by indicating the need for an improved dynamic model of the low Earth orbit (LEO) trapped environment. Additional studies using thermo-luminescent detector (TLD), tissue equivalent proportional counter (TEPC) area monitors, and computer aided design (CAD) model of earlier ISS configurations, confirmed STS observations that, as input, computational dosimetry requires an environmental model with dynamic and directional (anisotropic) behavior, as well as an accurate six degree of freedom (DOF) definition of the vehicle attitude and orientation along the orbit of ISS.  相似文献   

10.
Radiation in low Earth orbit (LEO) is mainly composed of galactic cosmic rays (GCR), solar energetic particles and particles in SAA (South Atlantic Anomaly). The biological impact of space radiation to astronauts depends strongly on the particles’ linear energy transfer (LET) and is dominated by high LET radiation. It is important to measure the LET spectrum for the space radiation field and to investigate the influence of radiation on astronauts. At present, the preferred active dosimeters sensitive to all LET are the tissue equivalent proportional counter (TEPC) and the silicon detectors in various configurations; the preferred passive dosimeters are CR-39 plastic nuclear track detectors (PNTDs) sensitive to high LET and thermoluminescence dosimeters (TLDs) as well as optically stimulated luminescence dosimeters (OSLDs) sensitive to low LET. The TEPC, CR-39 PNTDs, TLDs and OSLDs were used to investigate the radiation field for the ISS mission Expedition 13 (ISS-12S) in LEO. LET spectra and radiation quantities (fluence, absorbed dose, dose equivalent and quality factor) were measured for the space mission with different dosimeters. This paper introduces the role of high LET radiation in radiobiology, the operational principles for the different dosimeters, the LET spectrum method using CR-39 detectors, the method to combine the results measured with TLDs/OSLDs and CR-39 PNTDs, and presents the LET spectra and the radiation quantities measured and combined.  相似文献   

11.
12.
In the frame of the European Space Agency (ESA) project called “Biology and Physics in Space”, the returning satellite, Foton-M2, carried an open-to-space exposure platform outside of the satellite body, called as BIOPAN-5, loaded with exo-biological experiments and facilities for radiation dosimetry (RADO). One of the RADO experiments was dedicated to the detection of the primary galactic cosmic rays (GCR) and secondary neutrons by a track etch detector stack. The daily absorbed dose (D) and dose equivalent (H) were calculated from the experimental LET spectra (LET > 10 keV/μm). Under a shielding of ∼2.8 g/cm2 the averaged H was found to be 658 ± 8 μSv/d, with a quality factor (Q) of 6.2 ± 1.2. The LET spectra showed a local peak at ∼105 keV/μm suggesting that the majority of tracks were created by trapped protons as it has been predicted by calculations. The low LET dose of the cosmic radiation was determined by 4 TLD stacks, and the total dose was found to be 795 ± 14 μSv/d.  相似文献   

13.
The Liulin-5 experiment is a part of the international project MATROSHKA-R on the Russian segment of the ISS, which uses a tissue-equivalent spherical phantom equipped with a set of radiation detectors. The objective of the MATROSHKA-R project is to provide depth dose distribution of the radiation field inside the sphere in order to get more information on the distribution of dose in a human body. Liulin-5 is a charged particle telescope using three silicon detectors. It measures time resolved energy deposition spectra, linear energy transfer (LET) spectra, particle flux, and absorbed doses of electrons, protons and heavy ions, simultaneously at three depths along the radius of the phantom. Measurements during the minimum of the solar activity in cycle 23 show that the average absorbed daily doses at 40 mm depth in the phantom are between 180 μGy/day and 220 μGy/day. The absorbed doses at 165 mm depth in the phantom decrease by a factor of 1.6–1.8 compared to the doses at 40 mm depth due to the self-shielding of the phantom from trapped protons. The average dose equivalent at 40 mm depth is 590 ± 32 μSV/day and the galactic cosmic rays (GCR) contribute at least 70% of the total dose equivalent at that depth. Shown is that due to the South Atlantic Anomaly (SAA) trapped protons asymmetry and the direction of Liulin-5 lowest shielding zone the dose rates on ascending and descending nodes in SAA are different. The data obtained are compared to data from other radiation detectors on ISS.  相似文献   

14.
We study the 27-day variations of the solar wind velocity, galactic cosmic ray (GCR) intensity and anisotropy in the last minimum epoch of solar activity (2007–2009, A < 0). The average amplitude of the 27-day variation of the galactic cosmic ray anisotropy (A27A) in the current minimum epoch of solar activity (2007–2009, A < 0) is lesser than in previous positive polarity period as it is expected from the drift theory. So, polarity dependence rule for the 27-day variation of the GCR anisotropy is fully kept. It is a universal principle for the amplitudes of the 27-day variation of the GCR anisotropy. At the same time, the average amplitude of the 27-day variation of the GCR intensity (A27I) remains at the same level as for previous minimum epoch 1995–1997 (A > 0) showing by the same token an violation of its polarity dependence rule established earlier. We assume that this phenomenon could be generally related with the well established 27-day variation of the solar wind velocity being in anti-correlation with the similar changes of the 27-day variation of the GCR intensity. Generally, a character of the heliolongitudinal asymmetry of spatial large-scale structure of the solar wind velocity (SWV) established in the recent minimum epoch, preferentially pronounces in the behavior of the 27-day variation of the GCR intensity than anisotropy. The formation of the 27-day variation of the GCR anisotropy preferentially takes place in a restricted disk like local vicinity in the helioequatorial region, whilst the 27-day variation of the GCR intensity is formed in the global three dimensional vicinity of the heliosphere.  相似文献   

15.
The MéO (for Métrologie Optique) telescope is the Satellite and Lunar Laser Ranging (SLR) dedicated telescope of Observatoire de la Côte d’Azur (France) located at plateau de Calern. The telescope uses an altazimuth mount. The motorization of the mount has a capability of 6 deg/s allowing the follow up of Low Earth Orbits (LEO) satellites, as well as Medium Earth Orbits (MEO) and geostationary (GEO) satellites, and the Moon. The telescope has a primary mirror of 1.54 m. It uses a Nasmyth focus equipped with an EMCCD camera. The telescope field of view, defined by the equivalent focal length and the size of the camera, is currently 3.4 arcmin × 3.4 arcmin.  相似文献   

16.
At 1 AU and outside the Earth’s magnetosphere, the relative abundances to protons for He (He/p), C (C/p) and Fe (Fe/p) nuclei were calculated using the observation data of AMS-01 (for p and He) and HEAO-3 (for C and Fe) above 0.8 GeV/nucleon. In addition, the transmission function (TF) for the GCR propagation inside the magnetosphere was evaluated using the IGRF and T96 (introduced by Tsyganenko and Stern) models to obtain permitted and forbidden trajectories inside the magnetosphere. The TF allowed one to derive the primary He-nuclei fluxes in the same geomagnetic regions of AMS-01 observations. These fluxes were found in good agreement with the observation data. Furthermore inside the magnetosphere in addition to the flux of helium, it allowed one to obtain those of the primary p, C, and Fe nuclei and the relative abundances of He, C and Fe nuclei to protons from the same observation data of AMS-01 and HEAO-3 above ≈0.8 GeV/nucleon. Up to a geomagnetic latitude of ≈45.84°, the relative isotopic abundances were found to depend on the mass number Iisot and, on average, range from a factor ≈2.31 up to ≈3.35 larger than those outside the magnetosphere at 1 AU. Thus, the magnetospheric isotopic/nuclear relative abundances differ from those inside the solar cavity and those in the interstellar space. The usage of the TF approach can allow one to determine the nuclear abundances in the magnetosphere at any geomagnetic latitude and, thus, any orbit, provided that the CR spectra are determined at 1 AU.  相似文献   

17.
We analyze the magnetic structures in the near-tail at Xgsm = −17.5 Re on September 19, 2003 by Cluster. During the course of a substorm event, the earthward propagating plasmoid and flux ropes in the near-tail are observed. The earthward propagating plasmoid is associated with the bipolar Bz and By signatures. The two flux ropes are embedded within the earthward plasma flows, which might be referred to the population as ‘‘BBF-type’’ flux ropes. The first flux rope diameter is about 0.7 Re and duration based upon the Bz signature is ∼20 s, while the second one diameter is about 1.4 Re and duration is ∼30 s. The earthward propagating plasmoid and flux ropes could have influence upon the dipolarization and injection in inner magnetosphere. The Cluster observations of earthward propagating plasmoid and flux ropes can be interpreted as strong evidence for multiple X-lines. Our observations are consistent with that multiple plasmoids or flux ropes are formed repeatedly and ejected tailward in the course of geomagnetically active time.  相似文献   

18.
We find that the soft rigidity spectrum of the Galactic Cosmic Ray (GCR) intensity variations for the maximum epoch and the hard rigidity spectrum for the minimum epoch calculated based on the neutron monitors experimental data (1960–2002) are related with the various dependence of the diffusion coefficient on the GCR particle’s rigidity for different epoch of solar activity. This dependence is stronger in the maximum epoch than in the minimum epoch of solar activity, and is provided by the essential temporal rearrangements of the structure of the Interplanetary Magnetic Field (IMF) turbulence from the maxima to minima epoch of solar activity. We also show that the rigidity spectrum of GCR intensity variations is harder for the effective rigidities ∼(10–15) GV (by neutron monitors data), than for the effective rigidities ∼(25–30) GV (by neutron monitors and muon telescopes data). A general scenario of GCR modulation versus solar activity is settled on the essential temporal rearrangements of the structure of the IMF turbulence. Therefore, the temporal changes of the power law rigidity spectrum exponent can be considered as a vital (new) index to explain the 11-year variations of the GCR intensity. We assume that ∼(70–80)% of the changes of the amplitudes of the 11-year variations of GCR intensity is related with the changes of the IMF turbulence versus solar activity.  相似文献   

19.
We develop a three-dimensional (3-D) model of the 27-day variation of galactic cosmic-ray (GCR) intensity with a spatial variation of the solar wind velocity. A consistent, divergence-free interplanetary magnetic field is derived by solving the corresponding Maxwell equations with a variable solar wind speed, which reproduces in situ observed experimental data for the time interval to be analyzed (24 August 2007–28 February 2008). We perform model calculations for the GCR intensity using the variable solar wind and the corresponding magnetic field. Results are compatible with experimental data; the correlation coefficient between our model predictions and observed 27-day GCR variation is 0.80 ± 0.05.  相似文献   

20.
We show that rigidity spectrum of Forbush decrease (Fd) of galactic cosmic ray (GCR) intensity in September 9–23, 2005 clearly depends on energy. We calculated rigidity spectrum of the Fd based on the neutron monitors and Nagoya muon telescope channels’ data divided in three groups according to their cut off rigidities. We found that temporal changes of rigidity spectrum exponent γ are approximately similar for all cut off rigidity groups, but γ values are the larger the higher are cut off rigidities. We conclude that rigidity spectrum of Fd is hard for lower energy range and is soft for the higher energy range. We believe that an energy dependence of the power law rigidity spectrum of Fd is observed owing to the preferential convection–diffusion mechanism during Fd in September 9–23, 2005. It is a reflection of an influence of the temporal changes of the structure of the interplanetary magnetic field (IMF) turbulence in different range of frequency f during Fd. Particularly, a decisive role in formation of the character of the rigidity spectrum belongs to the changes of the exponent ν of the power spectral density (PSD) of the IMF turbulence (PSD ∝ f−ν). The exponent ν is greater for high frequency region of the IMF turbulence (responsible for scattering of low rigidity particles of GCR), than for low frequency region of the IMF turbulence (being responsible for scattering of higher rigidity particles). Also, we challenge to estimate an existence of slab/2D structure of solar wind turbulence during the Fd in September 9–23, 2005 based on the distribution of average turbulence energy among the IMF’s components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号