首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the advent of space flights questions concerning the effects of microgravity (0×G) on human reproductive physiology have received great attention. The aim of this study was to evaluate the influence of 0×G on Sertoli cells. A Sertoli cell line from mouse testis (42GPA9) was analyzed for cytoskeletal and Sex Hormone Binding Globilin (SHBG) changes by immunohistochemistry, for antioxidant content by RT-PCR and for culture medium lactate concentrations by protein chemistry. Cells were cultured for 6, 24 and 48 h on a three-dimensional Random Positioning Machine (3D-RPM); static controls (1×G) were positioned on the supporting frame. At the end of each experiment, cultured cells were either fixed in paraformaldehyde or lysed and RNA-extracted or used for culture medium lactate measurements as needed. At 0×G, Sertoli cytoskeleton became disorganized, microtubules fragmented and SHBG undetectable already after 24 h, with alterations worsening by 48 h. It was evident that various antioxidant systems appreciably increased during the first 24 h but significantly decreased at 48 h. No changes occurred in the 1×G samples. Initially, 0×G seemed to disturb antioxidant protection strategies allowing the testes to support sperm production, thus generating an aging-like state of oxidative stress. Lactate production at 0×G slightly decreased after 24 h. Further experiments are needed in space to investigate upon steroidogenesis and germ cell differentiation within the testis, to rule out male infertility as a possible consequence, which could be a problem, as life expectancy increases.  相似文献   

2.
Hematopoietic progenitor cell proliferation can be altered in either spaceflight or under simulated microgravity experiments on the ground, however, the underlying mechanism remains unknown. Our previous study showed that exposure of the human erythropoietin (EPO)-dependent leukemia cell line UT-7/EPO to conditions of simulated microgravity significantly inhibited the cellular proliferation rate and induced cell apoptosis. We postulated that the downregulation of the erythropoietin receptor (EPOR) expression in UT-7/EPO cells under simulated microgravity may be a possible reason for microgravity triggered apoptosis. In this paper, a human EPOR gene was transferred into UT-7/EPO cells and the resulting expression of EPOR on the surface of UT-7/EPO cells increased approximately 61% (p < 0.05) as selected by the antibiotic G418. It was also shown through cytometry assays and morphological observations that microgravity-induced apoptosis markedly decreased in these UT-7/EPO–EPOR cells. Thus, we concluded that upregulation of EPOR in UT-7/EPO cells could inhibit the simulated microgravity-induced cell apoptosis in this EPO dependent cell line.  相似文献   

3.
Although it has been suggested that microgravity might affect drug absorption in vivo, drug permeability across epithelial barriers has not yet been investigated in vitro during modelled microgravity. Therefore, a cell culture/diffusion chamber was designed specifically to accommodate epithelial cell layers in a 3D-clinostat and allow epithelial permeability to be measured under microgravity conditions in vitro with minimum alteration to established cell culture techniques. Human respiratory epithelial Calu-3 cell layers were used to model the airway epithelium. Cells grown at an air interface in the diffusion chamber from day 1 or day 5 after seeding on 24-well polyester Transwell cell culture inserts developed a similar transepithelial electrical resistance (TER) to cells cultured in conventional cell culture plates. Confluent Calu-3 layers exposed to modelled microgravity in the 3D-clinostat for up to 48 h maintained their high TER. The permeability of the paracellular marker 14C-mannitol was unaffected after a 24 h rotation of the cell layers in the 3D-clinostat, but was increased 2-fold after 48 h of modelled microgravity. It was demonstrated that the culture/diffusion chamber developed is suitable for culturing epithelial cell layers and, when subjected to rotation in the 3D-clinostat, will be a valuable in vitro system in which to study the influence of microgravity on epithelial permeability and drug transport.  相似文献   

4.
Performance of efficient single-person cardiopulmonary resuscitation (CPR) is vital to maintain cardiac and cerebral perfusion during the 2–4 min it takes for deployment of advanced life support during a space mission. The aim of the present study was to investigate potential differences in upper body muscle activity during CPR performance at terrestrial gravity (+1Gz) and in simulated microgravity (μG). Muscle activity of the triceps brachii, erector spinae, rectus abdominis and pectoralis major was measured via superficial electromyography in 20 healthy male volunteers. Four sets of 30 external chest compressions (ECCs) were performed on a mannequin. Microgravity was simulated using a body suspension device and harness; the Evetts–Russomano (ER) method was adopted for CPR performance in simulated microgravity. Heart rate and perceived exertion via Borg scores were also measured. While a significantly lower depth of ECCs was observed in simulated microgravity, compared with +1Gz, it was still within the target range of 40–50 mm. There was a 7.7% decrease of the mean (±SEM) ECC depth from 48 ± 0.3 mm at +1Gz, to 44.3 ± 0.5 mm during microgravity simulation (p < 0.001). No significant difference in number or rate of compressions was found between the two conditions. Heart rate displayed a significantly larger increase during CPR in simulated microgravity than at +1Gz, the former presenting a mean (±SEM) of 23.6 ± 2.91 bpm and the latter, 76.6 ± 3.8 bpm (p < 0.001). Borg scores were 70% higher post-microgravity compressions (17 ± 1) than post +1Gz compressions (10 ± 1) (p < 0.001). Intermuscular comparisons showed the triceps brachii to have significantly lower muscle activity than each of the other three tested muscles, in both +1Gz and microgravity. As shown by greater Borg scores and heart rate increases, CPR performance in simulated microgravity is more fatiguing than at +1Gz. Nevertheless, no significant difference in muscle activity between conditions was found, a result that is favourable for astronauts, given the inevitable muscular and cardiovascular deconditioning that occurs during space travel.  相似文献   

5.
Animal models are frequently used to assist in the determination of the long- and short-term effects of space flight. The space environment, including microgravity, can impact many physiological and immunological system parameters. It has been found that ground based models of microgravity produce changes in white blood cell counts, which negatively affects immunologic function. As part of the Center of Acute Radiation Research (CARR), we compared the acute effects on white blood cell parameters induced by the more traditionally used animal model of hindlimb unloading (HU) with a recently developed reduced weightbearing analog known as partial weight suspension (PWS). Female ICR mice were either hindlimb unloaded or placed in the PWS system at 16% quadrupedal weightbearing for 4 h, 1, 2, 7 or 10 days, at which point complete blood counts were obtained. Control animals (jacketed and non-jacketed) were exposed to identical conditions without reduced weightbearing. Results indicate that significant changes in total white blood cell (WBC), neutrophil, lymphocyte, monocyte and eosinophil counts were observed within the first 2 days of exposure to each system. These differences in blood cell counts normalized by day 7 in both systems. The results of these studies indicate that there are some statistically significant changes observed in the blood cell counts for animals exposed to both the PWS and HU simulated microgravity systems.  相似文献   

6.
The bone loss induced by microgravity is partly due to the decrease of mature osteoblasts. In the present study, we employed the random positioning machine (RPM) to simulate microgravity and investigated the acute effects of simulated microgravity on the differentiation of 2T3 preosteoblasts. Following 7 days’ culture under normal (1 g) condition, cells were exposed to simulated microgravity for 24 h. The results showed that 24 h treatment of simulated microgravity significantly decreased alkaline phosphatase (ALP) activity without changing the cell morphology. In addition, the mRNA expressions of osteogenic genes, including runt-related gene 2 (Runx2), osterix, osteocalcin (OC), type I collagen (Col I) and bone morphogenetic protein (BMP), were dramatically downregulated. Moreover, western blot analysis of total extracellular signal-regulated kinase (Erk) and phosphorylated Erk (p-Erk) indicated that p-Erk level, which represents the Erk activation status, was increased. Taken together, our results suggested that acute exposure to simulated microgravity inhibited osteoblast differentiation through modulating the expression of osteogenic genes and the Erk activity. These findings provide new insight for bone loss due to microgravity and unloading.  相似文献   

7.
In view of the concern for the health of astronauts that may one day journey to Mars or the Moon, we investigated the effect that space radiation and microgravity might have on DNA damage and repair. We sent frozen human lymphoblastoid TK6 cells to the International Space Station where they were maintained under frozen conditions during a 134-day mission (14 November 2008 to 28 March 2009) except for an incubation period of 8 days under 1G or μG conditions in a CO2 incubator. The incubation period started after 100 days during which the cells had been exposed to 54 mSv of space radiation. The incubated cells were then refrozen, returned to Earth, and compared to ground control samples for the determination of the influence of microgravity on cell survival and mutation induction. The results for both varied from experiment to experiment, yielding a large SD, but the μG sample results differed significantly from the 1G sample results for each of 2 experiments, with the mean ratio of μG to 1G being 0.55 for the concentration of viable cells and 0.59 for the fraction of thymidine kinase deficient (TK) mutants. Among the mutants, non-loss of zygosity events (point mutations) were less frequent (31%) after μG incubation than after 1G incubation, which might be explained by the influence of μG on cellular metabolic or physiological function. Additional experiments are needed to clarify the effect of μG interferes on DNA repair.  相似文献   

8.
Extrapolation of known radiation risks to the risks from low dose and low dose-rate exposures of human population, especially prolonged exposures of astronauts in the space radiation environment, relies in part on the mechanistic understanding of radiation induced biological consequences at the molecular level. While some genomic data at the mRNA level are available for cells or animals exposed to radiation, the data at the protein level are still lacking. Here, we studied protein expression profile changes using Panorama antibody microarray chips that contain antibodies to 224 proteins (or their phosphorylated forms) involved in cell signaling that included mostly apoptosis, cytoskeleton, cell cycle and signal transduction. Normal human fibroblasts were cultured until fully confluent and then exposed to 2 cGy of 150 MeV protons at high-dose rate. The proteins were isolated at 2 or 6 h after exposure and labeled with Cy3 for the irradiated cells and with Cy5 for the control samples before loading onto the protein microarray chips. The intensities of the protein spots were analyzed using ScanAlyze software and normalized by the summed fluorescence intensities and the housekeeping proteins. The results showed that low dose protons altered the expression of more than 10% of the proteins listed in the microarray analysis in various protein functional groups. Cell cycle (24%) related proteins were induced by protons and most of them were regulators of G1/S-transition phase. Comparison of the overall protein expression profiles, cell cycle related proteins, cytoskeleton and signal transduction protein groups showed significantly more changes induced by protons compared with other protein functional groups.  相似文献   

9.
This work compares cell wall regeneration from protoplasts of the fungus Penicillium decumbens under rotary culture (simulated microgravity) and stationary cultures. Using an optimized lytic enzyme mixture, protoplasts were successfully released with a yield of 5.3 × 105 cells/mL. Under simulated microgravity conditions, the protoplast regeneration efficiency was 33.8%, lower than 44.9% under stationary conditions. Laser scanning confocal microscopy gave direct evidence for reduced formation of polysaccharides under simulated conditions. Scanning electron microscopy showed the delayed process of cell wall regeneration by simulated microgravity. The delayed regeneration of P. decumbens cell wall under simulated microgravity was likely caused by the inhibition of polysaccharide synthesis. This research contributes to the understanding of how gravitational loads affect morphological and physiological processes of fungi.  相似文献   

10.
Temperature increases in plant reproductive organs such as anthers and stigmas could cause fertility impediments and thus produce sterile seeds under artificial lighting conditions without adequately controlled environments in closed plant growth facilities. There is a possibility such a situation could occur in Bioregenerative Life Support Systems under microgravity conditions in space because there will be little natural convective or thermal mixing. This study was conducted to determine the temperature of the plant reproductive organs as affected by illumination and air movement under normal gravitational forces on the earth and to make an estimation of the temperature increase in reproductive organs in closed plant growth facilities under microgravity in space. Thermal images of reproductive organs of rice and strawberry were captured using infrared thermography at air temperatures of 10–11 °C. Compared to the air temperature, temperatures of petals, stigmas and anthers of strawberry increased by 24, 22 and 14 °C, respectively, after 5 min of lighting at an irradiance of 160 W m−2 from incandescent lamps. Temperatures of reproductive organs and leaves of strawberry were significantly higher than those of rice. The temperatures of petals, stigmas, anthers and leaves of strawberry decreased by 13, 12, 13 and 14 °C, respectively, when the air velocity was increased from 0.1 to 1.0 ms−1. These results show that air movement is necessary to reduce the temperatures of plant reproductive organs in plant growth facilities.  相似文献   

11.
Jatropha (Jatropha curcas) is a tropical perennial species identified as a potential biofuel crop. The oil is of excellent quality and it has been successfully tested as biodiesel and in jet fuel mixes. However, studies on breeding and genetic improvement of jatropha are limited. Space offers a unique environment for experiments aiming at the assessment of mutations and differential gene expression of crops and in vitro cultures of plants are convenient for studies of genetic variation as affected by microgravity. However, before microgravity studies can be successfully performed, pre-flight experiments are necessary to characterize plant material and validate flight hardware environmental conditions. Such preliminary studies set the ground for subsequent spaceflight experiments. The objectives of this study were to compare the in vitro growth of cultures from three explant sources (cotyledon, leaf, and stem sections) of three jatropha accessions (Brazil, India, and Tanzania) outside and inside the petriGAP, a modified group activation pack (GAP) flight hardware to fit petri dishes. In vitro jatropha cell cultures were established in petri dishes containing a modified MS medium and maintained in a plant growth chamber at 25 ± 2 °C in the dark. Parameters evaluated were surface area of the explant tissue (A), fresh weight (FW), and dry weight (DW) for a period of 12 weeks. Growth was observed for cultures from all accessions at week 12, including subsequent plantlet regeneration. For all accessions differences in A, FW and DW were observed for inside vs. outside the PetriGAPs. Growth parameters were affected by accession (genotype), explant type, and environment. The type of explant influenced the type of cell growth and subsequent plantlet regeneration capacity. However, overall cell growth showed no abnormalities. The present study demonstrated that jatropha in vitro cell cultures are suitable for growth inside PetriGAPs for a period of 12 weeks. The parameters evaluated in this study provide the basic ground work and pre-flight assessment needed to justify a model for microgravity studies with jatropha in vitro cell cultures. Future studies should focus on results of experiments performed with jatropha in vitro cultures in microgravity.  相似文献   

12.
The purpose of this experiment was to estimate the protective effects of melatonin against radiation-induced brain damages in mice induced by heavy ion beams. Kun-Ming mice were randomly divided into five groups: normal control group, irradiation control group, and three different doses of melatonin (5, 10, and 20 mg/kg, i.p.) treated groups. Apart from the normal control group, the other four groups were exposed to whole-body 4.0 Gy carbon ion beam irradiation (approximately 0.5 Gy/min) after i.p. administration of normal saline or melatonin 1 h before irradiation. The oxidative redox status of brain tissue was assessed by measurement of malondiadehyde (MDA) levels, total superoxide dismutase (T-SOD), cytosolic superoxide dismutase (Cu/ZnSOD, SOD1) and mitochondrial superoxide dismutase (MnSOD, SOD2) activities at 8 h after irradiation. DNA damages were determined using the Comet assay and apoptosis and cell cycle distribution were detected by flow cytometric analyses. A dramatic dose-dependent decrease in MDA levels, tail moment, rates of tailing cells, and apoptosis, and a dose-dependent increase in T-SOD and SOD2 activities, in brain tissues in the melatonin-treated groups were detected compared with the irradiation only group. Furthermore, flow cytometric analysis demonstrated that the percentage of brain cells in the G0/G1 phase decreased significantly, while those in the S and G2/M stage increased dramatically, with mice pretreated with melatonin compared to the irradiation control group. These data indicate that melatonin has protective effects against irradiation-induced brain injury, and that its underlying protective mechanisms may relate to modulation of oxidative stress induced by heavy ionirradiation.  相似文献   

13.
Simulated microgravity (SMG) can inhibit proliferation and enhance microcystin production of Microcystis aeruginosa. We investigated the role of nitric oxide (NO) in regulating the SMG induced changes of proliferation, photochemical system II photochemical activity, pigment, soluble protein and microcystin production in M. aeruginosa. M. aeruginosa was exposed to 0.1 mM sodium nitroprusside (SNP, NO donor) or 0.02 mM 2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO, NO scavenger) alone or in combination with SMG for 48 h. SMG and SNP inhibited the growth of M. aeruginosa while c-PTIO had no effect on cell number. As to yield, the negative effect of SMG was augmented by SNP and suppressed by c-PTIO. The intracellular concentrations of chlorophyll a, carotenoid, phycocyanin, soluble protein and microcystin were increased by SMG after 48 h. The effects of SMG on these metabolic processes could be enhanced by SNP and be partly eliminated by c-PTIO. Moreover, SNP and c-PTIO only functioned in these biochemical processes under SMG, unlike in the regulation of cell proliferation and yield. These results showed that the effects of SMG could be enhanced by adding exogenous NO and be mitigated by scavenging endogenous NO, revealing the involvement of NO in the changes in biochemistry processes induced by SMG in M. aeruginosa.  相似文献   

14.
This study investigated intracellular oxidative stress and its underlying mechanisms in a rotary cell culture system used to achieve a simulated microgravity (SMG) environment. Experiments were conducted with human breast cancer cell lines MCF-7 (an estrogen receptor (ER) α positive cell line) and MDA-MB-231 (an ERα negative cell line) encapsulated in alginate/collagen carriers. After 48 h, SMG led to oxidative stress and DNA damage in the MDA-MB-231 cells but a significant increase in mitochondrial activity and minimal DNA damage in the MCF-7 cells. The activity of superoxide dismutase (SOD) significantly increased in the MCF-7 cells and decreased in MDA-MB-231 cells in the SMG environment compared with a standard gravity control. Moreover, SMG promoted expression of ERα and protein kinase C (PKC) epsilon in MCF-7 cells treated with PKC inhibitor Gö6983. Overall, exposure to SMG increased mitochondrial activity in ERα positive cells but induced cellular oxidative damage in ERα negative cells. Thus, ERα may play an important role in protecting cells from oxidative stress damage under simulated microgravity.  相似文献   

15.
Based on a formerly developed ground-based prototype of space plant-growing facility, the development of its improved prototype has been finished, so as to make its operating principle better adapt to the space microgravity environment. According to the developing experience of its first generation prototype and detailed demonstration and design of technique plan, its blueprint design and machining of related components, whole facility installment, debugging and trial operations were all done gradually. Its growing chamber contains a volume of about 0.5 m3 and a growing area of approximate 0.5 m2; the atmospheric environmental parameters in the growing chamber and water content in the growing media were controlled totally and effectively; lighting source is a combination of both red and blue light emitting diodes (LED). The following demonstrating results showed that the entire system design of the prototype is reasonable and its operating principle can nearly meet the requirements of space microgravity environment. Therefore, our plant-growing technique in space was advanced further, which laid an important foundation for next development of the space plant-growing facility and plant-cultivating experimental research in space microgravity condition.  相似文献   

16.
The budding yeast Saccharomyces cerevisiae has been proposed as an ideal model organism for clarifying the biological effects caused by spaceflight conditions. The postmitotic S. cerevisiae cells onboard Practice eight recoverable satellite were subjected to spaceflight for 15 days. After recovery, the viability, the glycogen content, the activities of carbohydrate metabolism enzymes, the DNA content and the lipid peroxidation level in yeast cells were analyzed. The viability of the postmitotic yeast cells after spaceflight showed a three-fold increase as compared with that of the ground control cells. Compared to the ground control cells, the lipid peroxidation level in the spaceflight yeast cells markedly decreased. The spaceflight yeast cells also showed an increase in G2/M cell population and a decrease in Sub-G1 cell population. The glycogen content and the activities of hexokinase and succinate dehydrogenase significantly decreased in the yeast cells after spaceflight. In contrast, the activity of malate dehydrogenase showed an obvious increase after spaceflight. These results suggested that microgravity or spaceflight could promote the survival of postmitotic S. cerevisiae cells through regulating carbohydrate metabolism, ROS level and cell cycle progression.  相似文献   

17.
18.
The experiments have been carried out with lettuce shoots on board the Salyut-7 orbital station, the Kosmos-1667 biological satellite and under ground conditions at 180° plant inversion. By means of the centrifuge Biogravistat-1M the threshold value of gravitational sensitivity of lettuce shoots has been determined on board the Salyut-7 station. It was found to be equal to 2.9 × 10−3g for hypocotyls and 1.5 × 10−4g for roots. The following results have been received in the experiment performed on board the Kosmos-1667 satellite: a) under microgravity the proliferation of the meristem cells and the growth of roots did not differ from the control; b) the growth of hypocotyls in length was significantly enhanced in microgravity; c) under microgravity transverse growth of hypocotyls (increase in cross sectional area) was significantly increased due to enhancement of cortical parenchyma cell growth. At 180° inversion in Earth's gravity root extension growth and rate of cell division in the root apical meristem were decreased. The determination of DNA-fuchsin value in the nuclei of the cell root apexes showed that inversion affected processess of the cell cycle preceeding cytokinesis.  相似文献   

19.
Vegetable cultivation plays a crucial role in dietary supplements and psychosocial benefits of the crew during manned space flight. Here we developed a ground-based prototype of horn-type sequential vegetable production facility, named Horn-type Producer (HTP), which was capable of simulating the microgravity effect and the continuous cultivation of leaf–vegetables on root modules. The growth chamber of the facility had a volume of 0.12 m3, characterized by a three-stage space expansion with plant growth. The planting surface of 0.154 m2 was comprised of six ring-shaped root modules with a fibrous ion-exchange resin substrate. Root modules were fastened to a central porous tube supplying water, and moved forward with plant growth. The total illuminated crop area of 0.567 m2 was provided by a combination of red and white light emitting diodes on the internal surfaces. In tests with a 24-h photoperiod, the productivity of the HTP at 0.3 kW for lettuce achieved 254.3 g eatable biomass per week. Long-term operation of the HTP did not alter vegetable nutrition composition to any great extent. Furthermore, the efficiency of the HTP, based on the Q-criterion, was 7 × 10−4 g2 m−3 J−1. These results show that the HTP exhibited high productivity, stable quality, and good efficiency in the process of planting lettuce, indicative of an interesting design for space vegetable production.  相似文献   

20.
The 53 kDa tumor suppressor protein p53 is generally thought to contribute to the genetic stability of cells and to protect cells from DNA damage through the activity of p53-centered signal transduction pathways. To clarify the effect of space radiation on the expression of p53-dependent regulated genes, gene expression profiles were compared between two human cultured lymphoblastoid cell lines: one line (TSCE5) has a wild-type p53 gene status, and the other line (WTK1) has a mutated p53 gene status. Frozen human lymphoblastoid cells were stored in a freezer in the International Space Station (ISS) for 133 days. Gene expression was analyzed using DNA chips after culturing the space samples for 6 h on the ground after their return from space. Ground control samples were also cultured for 6 h after being stored in a frozen state on the ground for the same time period that the frozen cells were in space. p53-Dependent gene expression was calculated from the ratio of the gene expression values in wild-type p53 cells and in mutated p53 cells. The expression of 50 p53-dependent genes was up-regulated, and the expression of 94 p53-dependent genes was down-regulated after spaceflight. These expression data identified genes which could be useful in advancing studies in basic space radiation biology. The biological meaning of these results is discussed from the aspect of gene functions in the up- and down-regulated genes after exposure to low doses of space radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号