首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radiation hazard for space missions is mainly due to cosmic ray protons, helium nuclei and light ions, whose energy spectrum is maximum around 1 GeV per nucleon but remains non-negligible for energies up to 15 GeV per nucleon. Nuclear reactions induced by high energy protons are often described by intranuclear cascade plus evaporation models. The attention is focused here on the Liège Intranuclear Cascade model (INCL), which has been shown to reproduce fairly well a great deal of experimental data for nucleon-induced reactions in the 200 MeV to 2 GeV range, when coupled with the ABLA evaporation-fission code. In order to extend the model to other conditions relevant for space radiation, three improvements of INCL are under development. They are reported on here. First, the reaction model has been extended to nucleon–nucleus reactions at incident energies up to 15 GeV, mainly by the inclusion of additional pion production channels in nucleon–nucleon collisions during the cascade. Second, a coalescence mechanism for the emission of light charged particles has been implemented recently. Finally, the model has been modified in order to accommodate light ions as projectiles. First results are shown and compared with illustrative experimental data. Implications for issues concerning radiation protection in space are discussed.  相似文献   

2.
On January 20, 2005, 7:02–7:04 UT the Aragats Multichannel Muon Monitor (AMMM) registered enhancement of the high energy secondary muon flux (energy threshold ∼5 GeV). The enhancement, lasting 3 min, has statistical significance of ∼4σ and is related to the X7.1 flare seen by the GOES satellite and the ground level enhancement detected by the world-wide network of neutron monitors and by muon detectors. The most probable proton energy corresponding to the measured 5 GeV muon flux is within 23–30 GeV. Due to upmost importance of the detection of solar particles of highest energies in presented paper we perform detailed statistical analysis of the detected peak. The statistical technique introduced in the paper is also appropriate for the searches of sources of ultra-high energy cosmic rays.  相似文献   

3.
The Balloon-borne Experiment with a Superconducting Spectrometer (BESS) has been carried out to search for primordial antiparticles in cosmic rays. In ten flights from 1993 to 2004, it measured the cosmic-ray antiproton spectrum in the energy range 0.1–4.2 GeV at various solar activity conditions. It also searched for antideuterons and antihelium nuclei, and it made precise measurement of cosmic-ray particle spectra. The BESS program has been extended to long duration balloon (LDB) flights in Antarctica (BESS-Polar) with the goal of achieving unprecedented sensitivity in the search for primordial antiparticles. This report describes recent results from BESS and progress of the BESS-Polar program.  相似文献   

4.
The galactic cosmic rays (GCR) are the main ionization source at altitude of ∼3–35 km in the atmosphere. For high latitude anomalous cosmic ray (ACR) component has also a significant influence on the atmospheric ionization. We propose an empirical model for differential spectra D(E) of galactic and anomalous cosmic rays in energy interval 1 MeV–100 GeV during solar cycle. In the model data are used which cover three solar cycles: 20, 22 and 23. The LEAP87, IMAX92, CAPRICE94, AMS98 and BESS experimental spectra for protons and alpha particles are fitted to the proposed empirical model. The modulated GCR differential spectra are compared with force-field approximation to the one-dimensional transport equation and with solutions of two-dimensional cosmic ray transport equation. For experimental spectra, the calculation of the model parameters is performed by Levenberg–Marquardt algorithm, applied to the special case of least squares. Algorithm that combines the rapid local convergence of Newton–Raphson method with globally convergent method for non-linear systems of equations is applied for theoretically obtained differential spectra. The described programmes are realized in algorithmic language C++. The proposed model gives practical possibility for investigation of experimental data from measurements of galactic cosmic rays and their anomalous component.  相似文献   

5.
The Advanced Thin Ionization Calorimeter (ATIC) experiment is designed for high energy cosmic ray ion detection. The possibility to identify high energy primary cosmic ray electrons in the presence of the ‘background’ of cosmic ray protons has been studied by simulating nuclear-electromagnetic cascade showers using the FLUKA Monte Carlo simulation code. The ATIC design, consisting of a graphite target and an energy detection device, a totally active calorimeter built up of 2.5 cm × 2.5 cm × 25.0 cm BGO scintillator bars, gives sufficient information to distinguish electrons from protons. While identifying about 80% of electrons as such, only about 2 in 10,000 protons (@ 150 GeV) will mimic electrons. In September of 1999 ATIC was exposed to high-energy electron and proton beams at the CERN H2 beam line, and this data confirmed the electron detection capabilities of ATIC. From 2000-12-28 to 2001-01-13 ATIC was flown as a long duration balloon test flight from McMurdo, Antarctica, recording over 360 h of data and allowing electron separation to be confirmed in the flight data. In addition, ATIC electron detection capabilities can be checked by atmospheric gamma-ray observations.  相似文献   

6.
The preliminary design of the new space gamma-ray telescope GAMMA-400 for the energy range 100 MeV–3 TeV is presented. The angular resolution of the instrument, 1–2° at Eγ ∼ 100 MeV and ∼0.01° at Eγ > 100 GeV, its energy resolution ∼1% at Eγ > 100 GeV, and the proton rejection factor ∼106 are optimized to address a broad range of science topics, such as search for signatures of dark matter, studies of Galactic and extragalactic gamma-ray sources, Galactic and extragalactic diffuse emission, gamma-ray bursts, as well as high-precision measurements of spectra of cosmic-ray electrons, positrons, and nuclei.  相似文献   

7.
The PAMELA experiment is devoted to the study of cosmic rays in Low Earth Orbit with an apparatus optimized to perform a precise determination of the galactic antimatter component of c.r. It is constituted by a number of detectors built around a permanent magnet spectrometer. PAMELA was launched in space on June 15th 2006 on board the Russian Resurs-DK1 satellite for a mission duration of 3 years. The characteristics of the detectors, the long lifetime and the orbit of the satellite, will allow to address several aspects of cosmic-ray physics. In this work we discuss the observational capabilities of PAMELA to detect the electron component above 50 MeV. The magnetic spectrometer allows a detailed measurement of the energy spectrum of electrons of galactic and Jovian origin. Long term measurements and correlations with Earth–Jupiter 13 months synodic period will allow to separate these two contributions and to measure the primary electron Jovian component, dominant in the 50–70 MeV energy range. With this technique it will also be possible to study the contribution to the electron spectrum of Jovian e reaccelerated up to 2 GeV at the Solar Wind Termination Shock.  相似文献   

8.
Fluctuations of cosmic rays and interplanetary magnetic field upstream of interplanetary shocks are studied using data of ground-based polar neutron monitors as well as measurements of energetic particles and solar wind plasma parameters aboard the ACE spacecraft. It is shown that coherent cosmic ray fluctuations in the energy range from 10 keV to 1 GeV are often observed at the Earth’s orbit before the arrival of interplanetary shocks. This corresponds to an increase of solar wind turbulence level by more than the order of magnitude upstream of the shock. We suggest a scenario where the cosmic ray fluctuation spectrum is modulated by fast magnetosonic waves generated by flux of low-energy cosmic rays which are reflected and/or accelerated by an interplanetary shock.  相似文献   

9.
Since 1993, a muon telescope located at Forschungszentrum Karlsruhe (Karlsruhe Muon Telescope) has been recording the flux of single muons mostly originating from primary cosmic-ray protons with dominant energies in the 10–20 GeV range. The data are used to investigate the influence of solar effects on the flux of cosmic rays measured at Earth. Non-periodic events like Forbush decreases and ground level enhancements are detected in the registered muon flux. A selection of recent events will be presented and compared to data from the Jungfraujoch neutron monitor. The data of the Karlsruhe Muon Telescope help to extend the knowledge about Forbush decreases and ground level enhancements to energies beyond the neutron monitor regime.  相似文献   

10.
The Balloon-borne Experiment with a Superconducting Spectrometer (BESS) was flown from Lynn Lake, Manitoba, Canada in August, 2000, during the maximum solar modulation period, with an average residual atmospheric overburden of 4.3 g/cm2. Precise spectral measurements of cosmic ray hydrogen isotopes from 0.178 GeV/n to 1.334 GeV/n were made during the 28.7 h of flight. This paper presents the measured energy spectra and their ratio, 2H/1H. The results are also compared with previous measurements and theoretical predictions.  相似文献   

11.
Systematic recording of the cosmic radiation commenced in Hobart in 1946 and at Mawson in Antarctica in 1955, making these two of the longest running cosmic ray observatories in the world. For the IGY, observations were also made at a sub-Antarctic island and near the equator, and an airborne survey of the nucleonic component was made from Geomagnetic Latitude −60°, south of Australia, to Japan and back. At Hobart there were neutron monitors, vertical and inclined muon telescopes, an ionization chamber, and two muon telescopes at ∼40 m of water equivalent underground. The research based on these and other observations determined the energy dependence of the Forbush and 11-year variations and concentrated, in particular, on understanding the anisotropic nature of galactic cosmic rays up to 150 GeV; the anisotropies in the onset phase of Forbush decreases; and the anisotropies in solar cosmic ray events. An investigation was initiated to calculate the trajectories and cutoff rigidities of cosmic rays in a high order simulation of the geomagnetic field. This was completed in 1959–60.  相似文献   

12.
Cosmic-ray electrons have been observed in the energy region from 10 GeV to 1 TeV with the PPB-BETS by a long duration balloon flight using a Polar Patrol Balloon (PPB) in Antarctica. The observation was carried out for 13 days at an average altitude of 35 km in January 2004. The PPB-BETS detector is an imaging calorimeter composed of scintillating-fiber belts and plastic scintillators inserted between lead plates. In the study of cosmic-ray electrons, there have been some suggestions that high-energy electrons above 100 GeV are a powerful probe to identify nearby cosmic-ray sources and search for particle dark matter. In this paper, we present the energy spectrum of cosmic-ray electrons in the energy range from 100 GeV to 1 TeV at the top of atmosphere, and compare our spectrum with the results from other experiments.  相似文献   

13.
Observations of charged particle fluxes in the stratosphere of the polar regions represent the cosmic rays variations with energy above 100 MeV. At the end of 2009 these fluxes reached the highest level for the time of observations from mid 1957 and were by 17% higher than the previous extremum value of May 1965. In the mean time the ground-based neutron monitors showed the remarkably less count rate enhancement. These results argue for the significant change in the energy spectrum of incoming particles in 2008–2009 in the energy range of ∼100–1500 MeV/n.  相似文献   

14.
Observations made with the two Voyager spacecraft confirmed that the solar wind decelerates to form the heliospheric termination shock. Voyager 1 crossed this termination shock at ∼94 AU in 2004, while Voyager 2 crossed it in 2007 at a different heliolatitude, about 10 AU closer to the Sun. These different positions of the termination shock confirm the dynamic and cyclic nature of the shock’s position. Observations from the two Voyager spacecraft inside the heliosheath indicate significant differences between them, suggesting that apart from the dynamic nature caused by changing solar activity there also may exist a global asymmetry in the north–south (polar) dimensions of the heliosphere, in addition to the expected nose–tail asymmetry. This relates to the direction in which the heliosphere is moving in interstellar space and its orientation with respect to the interstellar magnetic field. In this paper we focus on illustrating the effects of this north–south asymmetry on modulation of galactic cosmic ray Carbon, between polar angles of 55° and 125°, using a numerical model which includes all four major modulation processes, the termination shock and the heliosheath. This asymmetry is incorporated in the model by assuming a significant dependence on heliolatitude of the thickness of the heliosheath. When comparing the computed spectra between the two polar angles, we find that at energies E < ∼1.0 GeV the effects of the assumed asymmetry on the modulated spectra are insignificant up to 60 AU from the Sun but become increasingly more significant with larger radial distances to reach a maximum inside the heliosheath. In contrast, with E > ∼1.0 GeV, these effects remain insignificant throughout the heliosphere even very close to the heliopause. Furthermore, we find that a higher local interstellar spectrum for Carbon enhances the effects of asymmetric modulation between the two polar angles at lower energies (E < ∼300 MeV). In conclusion, it is found that north–south asymmetrical effects on the modulation of cosmic ray Carbon depend strongly on the extent of the geometrical asymmetry of the heliosheath together with the assumed value of the local interstellar spectrum.  相似文献   

15.
The origin of cosmic rays with energy E ? 1018 eV is a long-standing problem in astrophysics. The development of ever larger detectors has brought in key experimental results in the past decade, most particularly the detection of a cut-off at the expected position for the long sought Greisen–Zatsepin–Kuzmin suppression as well as evidence for large scale anisotropies. This paper summarizes and discusses the recent achievements in this field.  相似文献   

16.
The cosmic noise absorption is presented in terms of two-dimensional images obtained from the imaging riometers operated at the Southern Space Observatory (geographic coordinate: 29.4° S, 53.1° W), in São Martinho da Serra, Brazil, Concepcion (geographic coordinate: 36.5° S, 73.0° W) and Punta Arenas (geographic coordinate: 53.0° S, 70.5° W) in Chile, which belong to the South American Riometer Network and are located at the central and periphery regions of the South American Magnetic Anomaly. Correlations are performed between the maximum cosmic noise absorption observed at these stations and the energetic electron flux in two energy channels (>30 and >300 keV) and the proton flux in three energy channels (80–240, 800–2500 and >6900 keV) as measured by the Medium Energy Proton and Electron Detector, during a moderate geomagnetic storm that occurred on September 3, 2008. The results show high correlations between the cosmic noise absorption detected at São Martinho da Serra and the flux of protons with energy between 80 and 240 keV, and the flux of electrons with energies higher than 300 keV, while an additional ionization at Concepcion was correlated with electrons of energies higher than 30 keV. The cosmic noise absorption detected at Punta Arenas was probably caused by the increase of the protons flux with energy between 80 and 240 keV.  相似文献   

17.
We have performed a detailed Monte-Carlo (MC) simulation for the Advanced Thin Ionization Calorimeter (ATIC) detector using the MC code FLUKA-2005 which is capable of simulating particles up to 10 PeV. The ATIC detector has completed two successful balloon flights from McMurdo, Antarctica lasting a total of more than 35 days. ATIC is designed as a multiple, long duration balloon flight, investigation of the cosmic ray spectra from below 50 GeV to near 100 TeV total energy; using a fully active Bismuth Germanate (BGO) calorimeter. It is equipped with a large mosaic of silicon detector pixels capable of charge identification, and, for particle tracking, three projective layers of xy scintillator hodoscopes, located above, in the middle and below a 0.75 nuclear interaction length graphite target. Our simulations are part of an analysis package of both nuclear (A) and energy dependences for different nuclei interacting in the ATIC detector. The MC simulates the response of different components of the detector such as the Si-matrix, the scintillator hodoscopes and the BGO calorimeter to various nuclei. We present comparisons of the FLUKA-2005 MC calculations with GEANT calculations and with the ATIC CERN data.  相似文献   

18.
The question of the origin of cosmic rays and other questions of astroparticle and particle physics can be addressed with indirect air-shower observations above 10 TeV primary energy. We propose to explore the cosmic ray and γ-ray sky (accelerator sky) in the energy range from 10 TeV to 1 EeV with the new ground-based large-area wide angle (ΔΩ ∼ 0.85 sterad) air-shower detector HiSCORE (Hundredi Square-km Cosmic ORigin Explorer). The HiSCORE detector is based on non-imaging air-shower Cherenkov light-front sampling using an array of light-collecting stations. A full detector simulation and basic reconstruction algorithms have been used to assess the performance of HiSCORE. First prototype studies for different hardware components of the detector array have been carried out. The resulting sensitivity of HiSCORE to γ-rays will be comparable to CTA at 50 TeV and will extend the sensitive energy range for γ-rays up to the PeV regime. HiSCORE will also be sensitive to charged cosmic rays between 100 TeV and 1 EeV.  相似文献   

19.
We implemented a 2D Monte Carlo model to simulate the solar modulation of galactic cosmic rays. The model is based on the Parker’s transport equation which contains diffusion, convection, particle drift and energy loss. Following the evolution in time of the solar activity, we are able to modulate a local interstellar spectrum (LIS), that we assumed isotropic beyond the termination shock, down to the Earth position inside the heliosphere. In this work we focused our attention to the cosmic ray positron fraction at energy below ∼10 GeV, showing how the particle drift processes could explain different results for AMS-01 and PAMELA. We compare our modulated spectra with observations at Earth, and then make a prediction of the cosmic ray positron fraction for the AMS-02 experiment.  相似文献   

20.
Long-term balloon observations have been performed by the Lebedev Physical Institute since 1957 up to the present time. The observations are taken several times a week at the polar and mid latitudes and allow us to study dynamics of galactic and solar cosmic ray as well as secondary particle fluxes in the atmosphere and in the near-Earth space. Solar energetic particles (120) – mostly protons – (SEP) events with >100 MeV proton intensity above 1 cm−2 s−1 s−1 were recorded during 1958–2006. Before the advent of the SEP monitoring on spacecraft these results constituted the only homogeneous series of >100 MeV SEP events. The SEP intensities and energy spectra inferred from the Lebedev Physical Institute observations are consistent with the results taken in the adjacent energy intervals by the spacecraft and neutron monitors. Joint consideration of the SEP events series recorded by balloons and by neutron monitors during solar cycles 20–23 makes it possible to restore the probable number of events in solar cycle 19, which was not properly covered by observations. Some correlation was found between duration of SEP event production in a solar cycle and sunspot cycle characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号