首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radio bursts with fine structures in decimetric–centimetric wave range are generally believed to manifest the primary energy release process during flare/CME events. By spectropolarimeters in 1–2 GHz, 2.6–3.8 GHz, and 5.2–7.6 GHz at NAOC/Huairou with very high temporal (1.25–8 ms) and spectral (4–20 MHz) resolutions, the zebra patterns, spikes, and new types of radio fine structures with mixed frequency drift features are observed during several significant flare/CME events. In this paper we will discuss the occurrence of radio fine structures during the impulsive phase of flares and/or CME initiations, which may be connected to the magnetic reconnection processes.  相似文献   

2.
The 22 min long decimetric type IV radio event observed during the decay phase of the June 6, 2000 flare simultaneously by the Brazilian Solar Spectroscope (BSS) and the Ond?ejov radiospectrograph in frequency range 1200–4500 MHz has been analyzed. We have found that the characteristic periods of about 60 s belong to the long-period spectral component of the fast wave trains with a tadpole pattern in their wavelet power spectra. We have detected these trains in the whole frequency range 1200–4500 MHz. The behavior of individual wave trains at lower frequencies is different from that at higher frequencies. These individual wave trains have some common as well as different properties. In this paper, we focus on two examples of wave trains in a loop segment and the main statistical parameters in their wavelet power and global spectra are studied and discussed.  相似文献   

3.
This work presents the analysis of five fine structures in the solar radio emission, observed between June 2000 and October 2001 by the Brazilian Solar Spectroscope (BSS), in the decimeter frequency band of 950–2500 MHz. Based on their morphological characteristics identified in the dynamic spectra, the fine structures had been classified as type U-like or type J-like bursts. Such emissions are variants of the type III bursts. They support the hypothesis of generation by plasma emission mechanism, from interaction of electron beams accelerated during solar flares, propagating along closed magnetic structures, within the trapped plasma of the solar corona. The spectral and temporal characteristics of the five fine structures had been obtained from the dynamic spectra and the parameters of the agent and the emitting source have been determined, assuming both fundamental and harmonic emissions. The analysis revealed the flux density of the structures is less than 20–80 s.f.u. For assumption of harmonic emission, the interval of values for the source parameters estimated are: the loop size is (0.3–5.1) × 1010 cm; the electron beam velocity is in the range of 0.16–0.53 c; the temperature of coronal loop top is of the order of (0.25–1.55) × 107 K; and the low limit for the magnetic field is of 7–26 G. These results are in agreement with previous determinations reported in the literature.  相似文献   

4.
The digital, decimetric (950–2500 MHz) Brazilian Solar Spectroscope (BSS, Sawant, H.S., Subramanian, K.R., Faria, C., et al. Brazilian Solar Spectroscope (BSS). Solar Phys. 200, 167–176, 2001) with high time (10–1000 ms) and frequency (1–10 MHz) resolution is in regular operation since April, 1998, at the National Space Research Institute (INPE) at São José dos Campos, Brazil. The BSS has now been upgraded with a new digital data acquisition and data processing system. The new version of the BSS has improved the observational possibilities with the capability to record up to 200 frequency channels available in the selectable frequency range 950–2500 MHz. The GPS receiver permits the acquisition of data with time accuracy in the order of 0.1 ms. The software system of the BSS is composed by two distinct modules: the first, data acquisition system provides a flexible Graphical User Interface (GUI) that allows one to choose the observational parameters. The second module is the real time visualization system that permits real time visualization of the observed dynamic spectrum and additionally allows procedures for visualization and preliminary analysis of the recorded solar spectra. Using the new visualization system, we have realized two new types of dm-radio fine structures: narrow band type III bursts with positive as well as negative group frequency drift and dots emissions arranged in zebra-like and fiber-like chains. Furthermore, we have found flare generated fast wave trains according to their tadpole signature in wavelet power spectra for a decimetric type IV radio event (June 6, 2000 flare).  相似文献   

5.
Solar radio burst, especially the fine structures (FSs) and the drifting pulsation structures (DPSs), may be used as an important diagnostics tool to draw the evolution map of the flare loop in the initial phase of solar flares. In this work, 52 radio events were found accompanying with DPSs. They were all observed with the Solar Radio Spectrometers (0.625–7.6 GHz) of China during 1998–2004. Combining the radio observations with LASCO-C2, Goes-8 SXR, Hα, EUV and Trace observations, we analyzed all these events and obtained some statistic conclusions: First, 88% DPSs take place at the initial phase of the radio burst, and their rich spectrum characteristics are helpful to understand the events further. Second, 83% DPSs are associated with CMEs or ejection events, and all the events are accompanied by Goes SXR flare. Third, for CMEs and DPSs, which take the first step, there is no significant predominance of either of them. The relationship between the DPSs and CMEs is still not clear in this study because of the lack of spatial resolution in the centimeter–decimeter band. However, the EIT or Trace ejection happened during the onset/end time of DPSs. They are signatures of the initial phase of CMEs. Two events will be illustrated to explain this.  相似文献   

6.
This work presents the spectral and temporal features of radio bursts with fine structures (FSs) at broad band from 1.1 to 7.6 GHz. Fifteen burst events are studied with high frequency and temporal cadence observation from the Solar Broadband Radio Spectrometer at three frequency bands. It is found that the amount and species of radio FS decrease with increasing frequency band; the pulsation, type III burst and continuum are most frequently recorded; almost in all the burst events, more radio FSs occur before the soft X-ray (SXR) maximum than after; at 1.1–2.06 GHz, all types of radio FSs have more before the SXR peak except fiber; at 2.6–3.8 GHz, pulsation, fiber and spike prefer to appear after the peak; the separation between neighboring emission lines of zebra pattern increases with increasing frequency and the magnetic field deduced from the whistler model is 29–86 G at 1.1–2.06 GHz and 89–268 G at 2.6–3.8 GHz.  相似文献   

7.
By analyzing the vector magnetograms of Huairou Solar Observing Station (HSOS) taken at the line center (0.0 Å) and the line wing (−0.12 Å) of FeI λ5324.19 Å, we make an estimate of the measured errors in transversal azimuths (δ?) caused by Faraday rotation. Since many factors, such as the magnetic saturation and scattered light, can affect the measurement accuracy of the longitudinal magnetic field in the umbrae of sunspots, we limit our study in the region ∣Bz∣ < 800 G. The main mean azimuth rotations are about 4°, 6°, 7° and 9°, while ∣Bz∣ are in the ranges of 400–500 G, 500–600 G, 600–700 G and 700–800 G, respectively. Moreover, we find there is also an azimuth rotation of about 8° at the wavelength offset −0.12 Å of the line compared against a previous numerical simulation.  相似文献   

8.
Ionospheric effects of meteorological origin observed by the continuous HF Doppler sounder over the Czech Republic are reported in this paper. We focused on detection of waves of periods 1–10 min. We discuss the influence of dynamics and intensity of active weather systems on the occurrence of short period waves and dependence of the observed ionospheric effects on the height of reflection of the sounding radio wave. We observed 3–5 min waves during a severe weather event in summer and 2.5–4 min waves during a severe weather event in winter. We excluded possible geomagnetic origin of these oscillations by the analysis of fluctuations of the local geomagnetic field. In eight cases of 10, wave activity in the analysed period range was not significantly increased comparing to quiet days. The intensity of weather systems as well as the location of potential sources of waves towards the points of HF Doppler shift observation influence significantly the occurrence of infrasonic waves in the ionosphere. The results in Central Europe differ considerably from those previously obtained in North America. As a possible reason, we discuss different intensity and dynamics of weather systems in both regions.  相似文献   

9.
A series of three flares of GOES class M, M and C, and a CME were observed on 20 January 2004 occurring in close succession in NOAA 10540. Types II, III, and N radio bursts were associated. We use the combined observations from TRACE, EIT, Hα images from Kwasan Observatory, MDI magnetograms, GOES, and radio observations from Culgoora and Wind/ WAVES to understand the complex development of this event. We reach three main conclusions. First, we link the first two impulsive flares to tether-cutting reconnections and the launch of the CME. This complex observation shows that impulsive quadrupolar flares can be eruptive. Second, we relate the last of the flares, an LDE, to the relaxation phase following forced reconnections between the erupting flux rope and neighbouring magnetic field lines, when reconnection reverses and restores some of the pre-eruption magnetic connectivities. Finally, we show that reconnection with the magnetic structure of a previous CME launched about 8 h earlier injects electrons into open field lines having a local dip and apex (located at about six solar radii height). This is observed as an N-burst at decametre radio wavelengths. The dipped shape of these field lines is due to large-scale magnetic reconnection between expanding magnetic loops and open field lines of a neighbouring streamer. This particular situation explains why this is the first N-burst ever observed at long radio wavelengths.  相似文献   

10.
The analysis of observations of very high frequency radio noise intensity at the middle latitude on a frequency f = 500 MHz from 14th till 26th of October, 2003 is presented. These data are compared with the solar radio bursts in the range of frequencies 1–14 MHz registered by RAD2 receiver of the WAVES device installed on board the WIND spacecraft.  相似文献   

11.
We present a comparative study of the properties of coronal mass ejections (CMEs) and flares associated with the solar energetic particle (SEP) events in the rising phases of solar cycles (SC) 23 (1996–1998) (22 events) and 24 (2009–2011) (20 events), which are associated with type II radio bursts. Based on the SEP intensity, we divided the events into three categories, i.e. weak (intensity < 1 pfu), minor (1 pfu < intensity < 10 pfu) and major (intensity ? 10 pfu) events. We used the GOES data for the minor and major SEP events and SOHO/ERNE data for the weak SEP event. We examine the correlation of SEP intensity with flare size and CME properties. We find that most of the major SEP events are associated with halo or partial halo CMEs originating close to the sun center and western-hemisphere. The fraction of halo CMEs in SC 24 is larger than the SC 23. For the minor SEP events one event in SC23 and one event in SC24 have widths < 120° and all other events are associated with halo or partial halo CMEs as in the case of major SEP events. In case of weak SEP events, majority (more than 60%) of events are associated with CME width < 120°. For both the SC the average CMEs speeds are similar. For major SEP events, average CME speeds are higher in comparison to minor and weak events. The SEP event intensity and GOES X-ray flare size are poorly correlated. During the rise phase of solar cycle 23 and 24, we find north–south asymmetry in the SEP event source locations: in cycle 23 most sources are located in the south, whereas during cycle 24 most sources are located in the north. This result is consistent with the asymmetry found with sunspot area and intense flares.  相似文献   

12.
Using full-disk observations obtained with the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) spacecraft, we present variations of the solar acoustic mode frequencies caused by the solar activity cycle. High-degree (100 < ? < 900) solar acoustic modes were analyzed using global helioseismology analysis techniques over most of solar cycle 23. We followed the methodology described in details in [Korzennik, S.G., Rabello-Soares, M.C., Schou, J. On the determination of Michelson Doppler Imager high-degree mode frequencies. ApJ 602, 481–515, 2004] to infer unbiased estimates of high-degree mode parameters ([see also Rabello-Soares, M.C., Korzennik, S.G., Schou, J. High-degree mode frequencies: changes with solar cycle. ESA SP-624, 2006]). We have removed most of the known instrumental and observational effects that affect specifically high-degree modes. We show that the high-degree changes are in good agreement with the medium-degree results, except for years when the instrument was highly defocused. We analyzed and discuss the effect of defocusing on high-degree estimation. Our results for high-degree modes confirm that the frequency shift scaled by the relative mode inertia is a function of frequency and it is independent of degree.  相似文献   

13.
We report on the analysis of two fast CME-driven shocks observed with the UltraViolet Coronagraph Spectrometer (UVCS) on board the Solar and Heliospheric Observatory (SOHO). The first event, detected on 2002 March 22 at 4.1 R with the UVCS slit placed in correspondence with the flank of the expanding CME surface, represents the highest UV detection of a shock obtained so far with the UVCS instrument in the corona. The second one, detected on 2002 July 23 at 1.6 R with the UVCS slit placed in correspondence with the front of the expanding CME surface, shows an anomalous deficiency of ion heating with respect to what observed in previous CME/shocks observed by UVCS, possibly reflecting the effect of different coronal plasma conditions over the solar cycle. From the two different sets of observations we derived an estimate for the shock compression ratio X, which turns out to be X = 2.4 ± 0.2 and X = 2.2 ± 0.1, respectively, for the first and second event. Comparison between the two events provides complementary perspectives on the dynamical evolution of CME-driven shocks.  相似文献   

14.
Active region NOAA 11158 produced many flares during its disk passage. At least two of these flares can be considered as homologous: the C6.6 flare at 06:51 UT and C9.4 flare at 12:41 UT on February 14, 2011. Both flares occurred at the same location (eastern edge of the active region) and have a similar decay of the GOES soft X-ray light curve. The associated coronal mass ejections (CMEs) were slow (334 and 337 km/s) and of similar apparent widths (43° and 44°), but they had different radio signatures. The second event was associated with a metric type II burst while the first one was not. The COR1 coronagraphs on board the STEREO spacecraft clearly show that the second CME propagated into the preceding CME that occurred 50 min before. These observations suggest that CME–CME interaction might be a key process in exciting the type II radio emission by slow CMEs.  相似文献   

15.
The Arecibo Observatory (18°N, 66°W) has the world’s largest single dish antenna (300 m diameter). Beyond radio astronomy it can also operate as an incoherent scatter radar and in that mode its figure-of-merit makes it also one of the most powerful world-wide. For the present purpose all electron density data available on the web, from the beginning with the first erratic measurements in 1966 up to 2004 inclusive, were downloaded. The measurements range from about 100 km to beyond 700 km and are essentially evenly distributed, i.e. not dedicated to measure specific geophysical events. From manually edited/inspected data a neural network (NN) was established with season, hour of the day, solar activity and Kp as the input parameters. The performance of this model is checked against a – likewise NN based – global model of foF2, a measure of the maximum electron density of the ionosphere. Considering the diverse data sources and assumptions of the two models it can be concluded that they agree remarkably well.  相似文献   

16.
New outcomes are proposed for ionospheric absorption starting from the Appleton–Hartree formula, in its complete form. The range of applicability is discussed for the approximate formulae, which are usually employed in the calculation of non-deviative absorption coefficient. These results were achieved by performing a more refined approximation that is valid under quasi-longitudinal (QL) propagation conditions. The more refined QL approximation and the usually employed non-deviative absorption are compared with that derived from a complete formulation. Their expressions, nothing complicated, can usefully be implemented in a software program running on modern computers. Moreover, the importance of considering Booker’s rule is highlighted. A radio link of ground range D = 1000 km was also simulated using ray tracing for a sample daytime ionosphere. Finally, some estimations of the integrated absorption for the radio link considered are provided for different frequencies.  相似文献   

17.
X-ray spectrometer RESIK has observed spectra in the four wavelength bands from 3.3 Å to 6.1 Å. This spectral range contains many emission lines of H- and He-like ions for Si, S, Ar and K. These lines are formed in plasma of coronal temperatures (T > 3 MK). Analysis of their intensities allows studying differential emission measure distributions (DEM) in temperature range roughly between 3 MK and 30 MK. The aim of present study was to check whether any relationship exists between the character of DEM distribution, the event phase and the X-ray flare class. To do this we have calculated and analyzed the DEM distributions for a set of flares belonging to different GOES classes from the range B5.6–X1. The DEM distributions have been calculated using “Withbroe–Sylwester” multiplicative, maximum likelihood iterative algorithm. As the input data we have used absolute fluxes observed by RESIK in several spectral bands (lines + continuum). Respective emission functions have been calculated using the CHIANTI v. 5.2 atomic data package.  相似文献   

18.
The Solar Feature Catalogues for sunspots and active regions measured with SOHO/MDI instrument and Ca II K3 spectroheliograph of the Paris-Meudon Observatory are analyzed with the automated classification technique for sunspot groups and active region polarities. We report the first classification results for daily variations of tilt angles (normal and trigonometric ones) in sunspot groups (SG) and active (AR) regions in the cycle 23. The average normal tilts are presented for every year at the ascending and descending phases of the cycle 23 which are similar to those deduced by other authors for the cycles 19–22. The normal tilts of both the sunspot groups and active regions are shown to increase in the ascending phase and a decrease in the descending phase. Similar to SG and AR areas, the trigonometric tilts are shown to have the noticeable North–South asymmetry with the Southern hemisphere dominant in the selected ascending and descending periods. The normal tilt variations with latitude follow Joy’s law revealing a periodicity along the meridian of about 10° and reaching the maximum of 14° at the latitude of about 32° corresponding to the top of the ‘royal zone’ where the sunspots appear. The variations of polarity separation with a latitude are in an anti-phase with those of the tilts reaching a maximum at the latitude of 35° and showing a small positive separation for the groups/active regions in a vicinity of the average tilts ±40°. The ratio R of the polarity separation to the trigonometric tilt fits the linear function of a latitude φ as R = −0.0213φ − 0.1245 confirming positive separation for the polarities of active regions with the average tilts, or the dominance of activity in the Southern hemisphere activity, for the selected period of observations.  相似文献   

19.
20.
The 2nd Polar Patrol Balloon campaign (2nd-PPB) was carried out at Syowa Station in Antarctica during 2002–2003. Identical stratospheric balloon payloads were launched as close together in time as allowed by weather conditions to constitute a cluster of balloons during their flights. A very pronounced negative ion conductivity enhancement was observed at 32 km in the stratosphere below the auroral zone on 27 January 2003 from 1500 to 2200 UT. During this event, the conductivity doubled for an interval of about 7 h. This perturbation was associated with an extensive Pc 1 or Pi 1 wave event that was observed by several Antarctic ground stations, balloon PPB 10, and the Polar spacecraft. No appreciable X-ray precipitation was observed in association with this event, which would point to >60 Mev proton precipitation as a possible magnetosphere–stratosphere coupling mechanism responsible for the conductivity enhancement. Such precipitation is consistent with the wave data. During the latter half of the event, Ez was briefly positive. There was a tropospheric Southern Ocean storm system underneath the balloon during this interval. If the event was associated with this storm system and not energetic proton precipitation, the observations imply an electrified Southern Ocean storm and major perturbations in stratospheric conductivity driven by a tropospheric disturbance. This event represents a poorly understood source for global circuit current. Precipitating energetic proton data from Akebono and NOAA POES spacecraft show significant >16 MeV precipitation was occurring at the location of PPB 8 but not PPB 10, suggesting that proton precipitation was, in fact, the responsible coupling mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号