共查询到20条相似文献,搜索用时 0 毫秒
1.
A. Mangalam A. Prasad 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(2):738-748
We use our semi-analytic solution of the nonlinear force-free field equation to construct three-dimensional magnetic fields that are applicable to the solar corona and study their statistical properties for estimating the degree of braiding exhibited by these fields. We present a new formula for calculating the winding number and compare it with the formula for the crossing number. The comparison is shown for a toy model of two helices and for realistic cases of nonlinear force-free fields; conceptually the formulae are nearly the same but the resulting distributions calculated for a given topology can be different. We also calculate linkages, which are useful topological quantities that are independent measures of the contribution of magnetic braiding to the total free energy and relative helicity of the field. Finally, we derive new analytical bounds for the free energy and relative helicity for the field configurations in terms of the linking number. These bounds will be of utility in estimating the braided energy available for nano-flares or for eruptions. 相似文献
2.
S. Sen A. Mangalam 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(2):617-627
We build a single vertical straight magnetic fluxtube spanning the solar photosphere and the transition region which does not expand with height. We assume that the fluxtube containing twisted magnetic fields is in magnetohydrostatic equilibrium within a realistic stratified atmosphere subject to solar gravity. Incorporating specific forms of current density and gas pressure in the Grad–Shafranov equation, we solve the magnetic flux function, and find it to be separable with a Coulomb wave function in radial direction while the vertical part of the solution decreases exponentially. We employ improved fluxtube boundary conditions and take a realistic ambient external pressure for the photosphere to transition region, to derive a family of solutions for reasonable values of the fluxtube radius and magnetic field strength at the base of the axis that are the free parameters in our model. We find that our model estimates are consistent with the magnetic field strength and the radii of Magnetic bright points (MBPs) as estimated from observations. We also derive thermodynamic quantities inside the fluxtube. 相似文献
3.
Iñigo Arregui 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(2):655-672
In contrast to the situation in a laboratory, the study of the solar atmosphere has to be pursued without direct access to the physical conditions of interest. Information is therefore incomplete and uncertain and inference methods need to be employed to diagnose the physical conditions and processes. One of such methods, solar atmospheric seismology, makes use of observed and theoretically predicted properties of waves to infer plasma and magnetic field properties. A recent development in solar atmospheric seismology consists in the use of inversion and model comparison methods based on Bayesian analysis. In this paper, the philosophy and methodology of Bayesian analysis are first explained. Then, we provide an account of what has been achieved so far from the application of these techniques to solar atmospheric seismology and a prospect of possible future extensions. 相似文献
4.
H.Q. Zhang 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,42(9):1959
We present the evolution of magnetic field and relationship with the magnetic (current) helicity in solar active regions from a series of photospheric vector magnetograms obtained at Huairou Solar Observing Station near Beijing, and also longitudinal magnetograms by MDI of SOHO, white light and 171 Å images by TRACE and soft X-ray images by Yohkoh.The conclusions in the analysis of the formation process of complex and delta magnetic configuration in some super active regions are the following: (1) The magnetic shear and gradient provide the non-potentiality of the magnetic field of active regions reflecting the existence of electric current. (2) Some of large-scale delta active regions could be due to the emergence of highly sheared non-potential magnetic flux bundles from the subatmosphere with amount of magnetic helicity, in addition to the emergence of twisted magnetic ropes. (3) We also present some results on the study of the magnetic (current) helicity in solar active regions. 相似文献
5.
Jie Jiang Jingxiu Wang 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(6):874-880
The generation of solar non-axisymmetric magnetic fields is studied based on a linear α2–Ω dynamo model in a rotating spherical frame. The model consists of a solar-like differential rotation, a magnetic diffusivity varied with depth, and three types of α-effects with different locations, i.e. the tachocline, the whole convective zone and the sub-surface. Some comparisons of the critical α-values of axisymmetric (m = 0) and longitude-dependent modes (m = 1,2,3) are presented to show the roles of the magnetic diffusivity in the problem of modes selection. With the changing of diffusivity intensity for the given solar differential rotation system, the dominant mode possibly changes likewise and the stronger the diffusivity is, the easier the non-axisymmetric modes are excited. The influence of the diffusivity and differential rotation on the configurations of the dominant modes are also presented. 相似文献
6.
J.L. Ballester 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
The presence of small-amplitude oscillations in prominences is well-known from long time ago. These oscillations, whose exciters are still unknown, seem to be of local nature and are interpreted in terms of magnetohydrodynamic (MHD) waves. During last years, observational evidence about the damping of these oscillations has grown and several mechanisms able to damp these oscillations have been the subject of intense theoretical modelling. Among them, the most efficient seem to be radiative cooling and ion-neutral collisions. Radiative cooling is able to damp slow MHD waves efficiently, while ion-neutral collisions, in partially ionised plasmas like those of solar prominences, can also damp fast MHD waves. In this paper, we plan to summarize our current knowledge about the time and spatial damping of small-amplitude oscillations in prominences. 相似文献
7.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2020,65(6):1641-1653
Coronal mass ejections (CMEs), which are among the most magnificent solar eruptions, are a major driver of space weather and can thus affect diverse human technologies. Different processes have been proposed to explain the initiation and release of CMEs from solar active regions (ARs), without reaching consensus on which is the predominant scenario, and thus rendering impossible to accurately predict when a CME is going to erupt from a given AR. To investigate AR magnetic properties that favor CMEs production, we employ multi-spacecraft data to analyze a long duration AR (NOAA 11089, 11100, 11106, 11112 and 11121) throughout its complete lifetime, spanning five Carrington rotations from July to November 2010. We use data from the Solar Dynamics Observatory to study the evolution of the AR magnetic properties during the five near-side passages, and a proxy to follow the magnetic flux changes when no magnetograms are available, i.e. during far-side transits. The ejectivity is studied by characterizing the angular widths, speeds and masses of 108 CMEs that we associated to the AR, when examining a 124-day period. Such an ejectivity tracking was possible thanks to the multi-viewpoint images provided by the Solar-Terrestrial Relations Observatory and Solar and Heliospheric Observatory in a quasi-quadrature configuration. We also inspected the X-ray flares registered by the GOES satellite and found 162 to be associated to the AR under study. Given the substantial number of ejections studied, we use a statistical approach instead of a single-event analysis. We found three well defined periods of very high CMEs activity and two periods with no mass ejections that are preceded or accompanied by characteristic changes in the AR magnetic flux, free magnetic energy and/or presence of electric currents. Our large sample of CMEs and long term study of a single AR, provide further evidence relating AR magnetic activity to CME and Flare production. 相似文献
8.
M.K. Griffiths V. Fedun R. Erdélyi R. Zheng 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(2):720-737
The solar atmosphere exhibits a diverse range of wave phenomena, where one of the earliest discovered was the five-minute global acoustic oscillation, also referred to as the p-mode. The analysis of wave propagation in the solar atmosphere may be used as a diagnostic tool to estimate accurately the physical characteristics of the Sun’s atmospheric layers.In this paper, we investigate the dynamics and upward propagation of waves which are generated by the solar global eigenmodes. We report on a series of hydrodynamic simulations of a realistically stratified model of the solar atmosphere representing its lower region from the photosphere to low corona. With the objective of modelling atmospheric perturbations, propagating from the photosphere into the chromosphere, transition region and low corona, generated by the photospheric global oscillations the simulations use photospheric drivers mimicking the solar p-modes. The drivers are spatially structured harmonics across the computational box parallel to the solar surface. The drivers perturb the atmosphere at 0.5?Mm above the bottom boundary of the model and are placed coincident with the location of the temperature minimum. A combination of the VALIIIC and McWhirter solar atmospheres are used as the background equilibrium model.We report how synthetic photospheric oscillations may manifest in a magnetic field free model of the quiet Sun. To carry out the simulations, we employed the magnetohydrodynamics code, SMAUG (Sheffield MHD Accelerated Using GPUs).Our results show that the amount of energy propagating into the solar atmosphere is consistent with a model of solar global oscillations described by Taroyan and Erdélyi (2008) using the Klein-Gordon equation. The computed results indicate a power law which is compared to observations reported by Ireland et al. (2015) using data from the Solar Dynamics Observatory/Atmospheric Imaging Assembly. 相似文献
9.
Y.E. Litvinenko 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(4):1466-1471
The maximum entropy formalism and dimensional analysis are used to derive a power-law spectrum of accelerated electrons in impulsive solar flares, where the particles can contain a significant fraction of the total flare energy. Entropy considerations are used to derive a power-law spectrum for a particle distribution characterised by its order of magnitude of energy. The derivation extends an earlier one-dimensional argument to the case of an isotropic three-dimensional particle distribution. Dimensional arguments employ the idea that the spectrum should reflect a balance between the processes of energy input into the corona and energy dissipation in solar flares. The governing parameters are suggested on theoretical grounds and shown to be consistent with solar flare observations. The flare electron flux, differential in the non-relativistic electron kinetic energy E, is predicted to scale as . This scaling is in agreement with RHESSI measurements of the hard X-ray flux that is generated by deka-keV electrons, accelerated in intense solar flares. 相似文献
10.
Jingxiu Wang Jun Zhang 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2007,40(12):1770-1779
We first briefly review the current trend in the studies of coronal mass ejections (CMEs), then summarize some recent efforts in understanding the CME initiation. Emphasis has been put on the studies of Earth-directed CMEs whose associated surface activity and large scale magnetic source have been well identified. The data analysis by combining the MDI full disc magnetograms, vector magnetograms of active regions, EUV waves and dimmings, non-thermal radio sources, and the SOHO LASCO observations has shed new light in understanding the CME magnetism. However, the current studies seem to invoke new observations in a few aspects: (1) The observations which enable us to trace CMEs from the earliest associated surface activity to its initial acceleration and key development in the low corona in the height of 1–3 R; (2) The imaging spectroscopic observations which can be used to diagnose the early plasma outflow and the line-of-sight velocity in understanding the kinematics of CMEs; (3) The accurate timing from primary magnetic energy release, manifested by chromospheric activity, non-thermal radio bursts, and EUV, X-ray and γ-ray emissions, to the CME initiation, early acceleration and propagation, and the consequences in the interplanetary space and magnetosphere. The Kuafu Mission will meet the basic requirement for the new observations in CME initiation studies and serve as a monitor of space weather of the Sun–Earth system. 相似文献
11.
Carolus J. Schrijver 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
This review focuses on the processes that energize and trigger M- and X-class solar flares and associated flux-rope destabilizations. Numerical modeling of specific solar regions is hampered by uncertain coronal-field reconstructions and by poorly understood magnetic reconnection; these limitations result in uncertain estimates of field topology, energy, and helicity. The primary advances in understanding field destabilizations therefore come from the combination of generic numerical experiments with interpretation of sets of observations. These suggest a critical role for the emergence of twisted flux ropes into pre-existing strong field for many, if not all, of the active regions that produce M- or X-class flares. The flux and internal twist of the emerging ropes appear to play as important a role in determining whether an eruption will develop predominantly as flare, confined eruption, or CME, as do the properties of the embedding field. Based on reviewed literature, I outline a scenario for major flares and eruptions that combines flux-rope emergence, mass draining, near-surface reconnection, and the interaction with the surrounding field. Whether deterministic forecasting is in principle possible remains to be seen: to date no reliable such forecasts can be made. Large-sample studies based on long-duration, comprehensive observations of active regions from their emergence through their flaring phase are needed to help us better understand these complex phenomena. 相似文献
12.
M.C. Rabello-Soares Sylvain G. Korzennik J. Schou 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(6):861-867
Using full-disk observations obtained with the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) spacecraft, we present variations of the solar acoustic mode frequencies caused by the solar activity cycle. High-degree (100 < ? < 900) solar acoustic modes were analyzed using global helioseismology analysis techniques over most of solar cycle 23. We followed the methodology described in details in [Korzennik, S.G., Rabello-Soares, M.C., Schou, J. On the determination of Michelson Doppler Imager high-degree mode frequencies. ApJ 602, 481–515, 2004] to infer unbiased estimates of high-degree mode parameters ([see also Rabello-Soares, M.C., Korzennik, S.G., Schou, J. High-degree mode frequencies: changes with solar cycle. ESA SP-624, 2006]). We have removed most of the known instrumental and observational effects that affect specifically high-degree modes. We show that the high-degree changes are in good agreement with the medium-degree results, except for years when the instrument was highly defocused. We analyzed and discuss the effect of defocusing on high-degree estimation. Our results for high-degree modes confirm that the frequency shift scaled by the relative mode inertia is a function of frequency and it is independent of degree. 相似文献
13.
14.
A.N. Kryshtal S.V. Gerasimenko A.D. Voitsekhovska 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
Process of second harmonics generation due to development of corresponding instability has been investigated for pure electron weakly oblique Bernstein mode. This mode was supposed to be modified by taking into account the influence of pair Coulomb collisions and weak large-scale electric field in flare loop. Investigated area was located near the loop foot-point in the “lower–middle” chromosphere of active region. It has been shown, that for the Fontenla–Avrett–Loeser model of solar atmosphere the investigated process of second harmonics generation starts at the extremely low threshold values of subdreicer electric field, well before the beginning of “preheating” phase of flare process. 相似文献
15.
S.A. Demin Y.A. Nefedyev A.O. Andreev N.Y. Demina S.F. Timashev 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(2):639-644
The analysis of turbulent processes in sunspots and pores which are self-organizing long-lived magnetic structures is a complicated and not yet solved problem. The present work focuses on studying such magneto-hydrodynamic (MHD) formations on the basis of flicker-noise spectroscopy using a new method of multi-parametric analysis. The non-stationarity and cross-correlation effects taking place in solar activity dynamics are considered. The calculated maximum values of non-stationarity factor may become precursors of significant restructuring in solar magnetic activity. The introduced cross-correlation functions enable us to judge synchronization effects between the signals of various solar activity indicators registered simultaneously. 相似文献
16.
Alexander Warmuth 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
Ten years after the first observation of large-scale wave-like coronal disturbances with the EIT instrument aboard SOHO, the most crucial questions concerning these “EIT waves” are still being debated controversially – what is their actual physical nature, and how are they launched? Possible explanations include MHD waves or shocks, launched by flares or driven by coronal mass ejections (CMEs), as well as models where coronal waves are not actually waves at all, but generated by successive “activation” of magnetic fieldlines in the framework of a CME. Here, we discuss recent observations that might help to discriminate between the different models. We focus on strong coronal wave events that do show chromospheric Moreton wave signatures. It is stressed that multiwavelength observations with high time cadence are particularly important, ideally when limb events with CME observations in the low corona are available. Such observations allow for a detailed comparison of the kinematics of the wave, the CME and the associated type II radio burst. For Moreton-associated coronal waves, we find strong evidence for the wave/shock scenario. Furthermore, we argue that EIT waves are actually generated by more than one physical process, which might explain some of the issues which have made the interpretation of these phenomena so controversial. 相似文献
17.
A.K. Srivastava G.J.J. Botha T.D. Arber P. Kayshap 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Srivastava et al. (2010) have observed a highly twisted coronal loop, which was anchored in AR10960 during the period 04:43 UT-04:52 UT on 4 June 2007. The loop length and radius are approximately 80 Mm and 4 Mm, with a twist of 11.5 π. These observations are used as initial conditions in a three dimensional nonlinear magnetohydrodynamic simulation with parallel thermal conduction included. The initial unstable equilibrium evolves into the kink instability, from which synthetic observables are generated for various high-temperature filters of SDO/AIA. These observables include temporal and spatial averaging to account for the resolution and exposure times of SDO/AIA images. Using the simulation results, we describe the implications of coronal kink instability as observables in SDO/AIA filters. 相似文献
18.
M. Mierla R. Schwenn L. Teriaca G. Stenborg B. Podlipnik 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(12):2199-2203
The LASCO-C1 telescope was designed to perform spectral analysis of coronal structures by means of a tunable Fabry–Pérot interferometer acquiring images at different wavelengths. Results from spectral scans of the Fe xiv 5303 Å green coronal emission line are presented. Physical quantities like the ion temperature (line widths), and the flow velocity along the line of sight (Doppler shifts) are obtained over the entire corona. 相似文献
19.
C. Jacobs S. Poedts 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The solar wind fills the heliosphere and is the background medium in which coronal mass ejections propagate. A realistic modelling of the solar wind is therefore essential for space weather research and for reliable predictions. Although the solar wind is highly anisotropic, magnetohydrodynamic (MHD) models are able to reproduce the global, average solar wind characteristics rather well. The modern computer power makes it possible to perform full three dimensional (3D) simulations in domains extending beyond the Earth’s orbit, to include observationally driven boundary conditions, and to implement even more realistic physics in the equations. In general, MHD models for the solar wind often make use of additional source and sink terms in order to mimic the observed solar wind parameters and/or they hide the not-explicitly modelled physical processes in a reduced or variable adiabatic index. Even the models that try to take as much as possible physics into account, still need additional source terms and fine tuning of the parameters in order to produce realistic results. In this paper we present a new and simple polytropic model for the solar wind, incorporating data from the ACE spacecraft to set the model parameters. This approach allows to reproduce the different types of solar wind, where the simulated plasma variables are in good correspondence with the observed solar wind plasma near 1 AU. 相似文献
20.
Arnab Rai Choudhuri 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(6):868-873
Over the last few years, dynamo theorists seem to be converging on a basic scenario as to how the solar dynamo operates. The strong toroidal component of the magnetic field is produced in the tachocline, from where it rises due to magnetic buoyancy to produce active regions at the solar surface. The decay of tilted bipolar active regions at the surface gives rise to the poloidal component, which is first advected poleward by the meridional circulation and then taken below the surface to the tachocline where it can be stretched to produce the toroidal component. The mathematical formulation of this basic model, however, involves the specification of some parameters which are still uncertain. We review these remaining uncertainties which have resulted in disagreements amongst various research groups and have made it impossible to still arrive at something that can be called a standard model of the solar dynamo. 相似文献