首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
ARGO-YBJ is a multipurpose experiment consisting in a dense sampling air shower array with 93% sensitive area located at very high altitude. The apparatus is in stable data taking since November 2007 at the YangBaJing Cosmic Ray Laboratory (Tibet, PR China, 4300 m a.s.l., 606 g/cm2). In this paper we report the main results in Gamma-Ray Astronomy and Cosmic Ray Physics after about 3 years of operation.  相似文献   

3.
Cosmic Ray research on Mt. Aragats began in 1934 with the measurements of East–West anisotropy by the group from Leningrad Physics-Technical Institute and Norair Kocharian from Yerevan State University. Stimulated by the results of their experiments in 1942 Artem and Abraham Alikhanyan brothers organized a scientific expedition to Aragats. Since that time physicists were studying Cosmic Ray fluxes on Mt. Aragats with various particle detectors: mass spectrometers, calorimeters, transition radiation detectors, and huge particle detector arrays detecting protons and nuclei accelerated in most violent explosions in Galaxy. Latest activities at Mt. Aragats include Space Weather research with networks of particle detectors located in Armenia and abroad, and detectors of Space Education center in Yerevan.  相似文献   

4.
Cosmic ray research in Mexico dates from the early 1930s with the work of the pioneering physicist, Manuel Sandoval Vallarta and his students from Mexico. Several experiments of international significance were carried out during that period in Mexico: they dealt with the geomagnetic latitude effect, the north–south and west–east asymmetry of cosmic ray intensity, and the sign of the charge of cosmic rays. The international cosmic ray community has met twice in Mexico for the International Cosmic Ray Conferences (ICRC): the fourth was held in Guanajuato in 1955, and the 30th took place in Mérida, in 2007. In addition, an international meeting on the Pierre Auger Collaboration was held in Morelia in 1999, and the International Workshop on Observing UHE Cosmic Rays took place in Metepec in 2000. A wide range of research topics has been developed, from low-energy Solar Energetic Particles (SEP) to the UHE. Instrumentation has evolved since the early 1950s, from a Simpson type neutron monitor installed in Mexico City (2300 m asl) to a solar neutron telescope and an EAS Cherenkov array, (within the framework of the Auger International Collaboration), both at present operating on Mt. Sierra La Negra in the state of Puebla (4580 m asl). Research collaboration has been undertaken with many countries; in particular, the long-term collaboration with Russian scientists has been very fruitful.  相似文献   

5.
Since mean free paths for nuclear fragmentation are of the order of the ranges of primary Galactic Cosmic Ray (GCR) nuclei, determination of the radiation field produced by successive fragmentations of nuclei in material and tissue is essential to accurate assessment of GCR radiation risk to humans on long-duration missions outside the geomagnetosphere. We describe some recent measurements made at the Bevalac of heavy ion transport through materials, with representative results and examples of how they may be applied to aspects of the space radiation problem, including efforts to devise analytical tools for predicting biological effects and for designing spacecraft shielding.  相似文献   

6.
The effect of a latitude-dependent solar wind speed on a Fisk heliospheric magnetic field [Fisk, L. A. Motion of the footpoints of heliospheric magnetic field lines at the Sun: implications for recurrent energetic particle events at high heliographic latitudes. J. Geophys. Res. 101, 15547–15553, 1996] was first discussed by Schwadron and Schwadron and McComas [Schwadron, N.A. An explanation for strongly underwound magnetic field in co-rotating rarefaction regions and its relationship to footpoint motion on the the sun. Geophys. Res. Lett. 29, 1–8, 2002. and Schwadron, N.A., McComas, D.J. Heliospheric “FALTS”: favored acceleration locations at the termination shock. Geophys. Res. Lett. 30, 41–1, 2003]. Burger and Sello [Burger, R.A., Sello, P.C. The effect on cosmic ray modulation of a Parker field modified by a latitudinal-dependent solar wind speed. Adv. Space Res. 35, 643–646, 2005] found a significant effect for a simplified 2D version of a latitude-dependent Fisk-type field while Miyake and Yanagita [Miyake, S., Yanagita, S. The effect of a modified Parker field on the modulation of the galactic cosmic rays. In: Proceedings of 30th International Cosmic Ray Conference. Merida, Mexico, vol. 1, 445–448, 2007] found a smaller effect. The current report improves on a previous attempt Hitge and Burger [Hitge, M., Burger, R.A. The effect of a latitude-dependent solar wind speed on cosmic-ray modulation in a Fisk-type heliospheric magnetic field. In: Proceedings of 30th International Cosmic Ray Conference. Merida, Mexico, vol. 1, pp. 449–450, 2007] where the global change in the solar wind speed and not the local speed gradient was emphasized. The sheared Fisk field of Schwadron and McComas [Schwadron, N.A., McComas, D.J. Heliospheric “FALTS”: Favored acceleration locations at the termination shock. Geophys. Res. Lett. 30, 41–1, 2003.) is similar to the current Schwadron–Parker hybrid field. Little difference is found between the effects of a Parker field and a Schwadron–Parker hybrid field on cosmic-ray modulation, in contrast to the results of Burger and Sello and Miyake and Yanagita [Burger, R.A., Sello, P.C. The effect on cosmic ray modulation of a Parker field modified by a latitudinal-dependent solar wind speed. Adv. Space Res. 35, 643–646, 2005 and Miyake, S., Yanagita, S. The effect of a modified Parker field on the modulation of the galactic cosmic rays. In: Proceedings of 30th International Cosmic Ray Conference. Merida, Mexico, vol. 1, pp. 445–448, 2007]. The two-dimensional approximation used by these authors is therefore inadequate to model the complexities of the actual three-dimensional field. We also show that a Fisk-type field with a latitude-dependent solar wind speed (Schwadron–Parker hybrid field) decreases both the relative amplitude of recurrent cosmic ray intensity variations and latitude gradients and yields similar constants of proportionality for these quantities as for the constant solar wind speed case.  相似文献   

7.
This paper presents the observational results of space energetic particles obtained by the Cosmic Ray Composition Monitor (CRCM) onboard the Chinese satellite, Fengyun-1(B). These results, including those of a few solar proton events, the geomagnetically trapped particles and the anomalous cosmic ray components, were obtained from 3 September 1990 to 15 February 1991. The observed elements include H, He, C, N, O and Fe of energies from 4-23 MeV/u. It was found that the proton fluxes of the inner Radiation Belt (IRB) increased obviously during the period of solar proton event (SPE). A few kinds of heavy ions (Z > or = 6) were also detected in the IRB. As to the anomalous cosmic ray component (ACRC), in addition to C, N and O, anomalous iron particles were also recorded.  相似文献   

8.
雷暴期间大气电场强度变化及其伴随的宇宙线粒子增长的研究, 对于理解大气电场对宇宙线次级粒子的加速机制具有极其重要的意义. 2006年4月至 8月期间, 西藏羊八井宇宙线观测站记录到了20多次雷暴事件. 分析了雷暴期间, ARGO实验scaler模式下次级宇宙线计数与大气电场之间的相关性. 结果显示, 雷暴期间大气电场剧烈变化时, 多重数n=1, 2的次级宇宙线计数率有明显增长, 增幅在1%~9%之间, 然而n=3, n≥ 4的次级宇宙线计数率增长不明显, 甚至没有增长. 该结果为进一步研究雷暴期间大气电场对次级宇宙线的加速机制打下了基础.   相似文献   

9.
The University of Kiel Cosmic Ray Instrument on board the solar probes HELIOS-1 and -2 measured angular distributions of electrons, protons, and heavier nuclei between 0.3 and 1 AU over one complete solar cycle between 1974 and 1986. Anisotropies are observed mainly during the rising phase of solar particle events or close to the passage of certain interplanetary shocks. The anisotropies are presented as proton data of energies between 27 and 37 MeV. The dependence of the anisotropies on particle energy and distance from the sun is provided based on diffusive propagation in interplanetary space. Strong anisotropies could provide a chance of efficient shielding of the passenger compartment by moving heavier parts of the spacecraft structure into the direction of the highest flux. A reduction of the total radiation dose by less than a factor of 2 might be achievable, however, selection of quiet times for the mission reduces the radiation hazard much more.  相似文献   

10.
The evidently low solar activity observed between solar cycles 23 and 24 during the years 2008–2010 led to a substantial increase in the Galactic Cosmic Ray (GCR) intensity in comparison with preceding solar minima. As the GCRs consist of highly-ionizing charged particles having the potential to cause biological damage, they are a subject of concern for manned missions to space. With the enhanced particle fluxes observed between 2008 and 2010, it is reasonable to assume that the radiation exposure from GCR must have also increased to unusually high levels. In this paper, the GCR exposure outside and inside the Earth’s magnetosphere is numerically calculated for time periods starting from 1970 to the end of 2011 in order to investigate the increase in dose levels during the years 2008–2010 in comparison with the last three solar minima. The dose rates were calculated in a water sphere, used as a surrogate for the human body, either unshielded or surrounded by aluminium shielding of 0.3, 10 or 40 g/cm2.  相似文献   

11.
The two primary requirements for a Martian habitat structure include effective radiation shielding against the Galactic Cosmic Ray (GCR) environment and sufficient structural and thermal integrity. To significantly reduce the cost associated with transportation of such materials and structures from earth, it is imperative that such building materials should be synthesized primarily from Martian in situ resources. This paper illustrates the feasibility of such an approach. Experimental results are discussed to demonstrate the synthesis of polyethylene (PE) from a simulated Martian atmosphere and the fabrication of a composite material using simulated Martian regolith with PE as the binding material. The radiation shielding effectiveness of the proposed composites is analyzed using results from radiation transport codes and exposure of the samples to high-energy beams that serve as a terrestrial proxy for the GCR environment. Mechanical and ballistic impact resistance properties of the proposed composite as a function of composition, processing parameters, and thermal variations are also discussed to evaluate the multifunctionality of such in situ synthesized composite materials.  相似文献   

12.
The CORONAS-F mission experiments and results have been reviewed. The observations with the DIFOS multi-channel photometer in a broad spectral range from 350 to 1500 nm have revealed the dependence of the relative amplitudes of p-modes of the global solar oscillations on the wavelength that agrees perfectly well with the earlier data obtained in a narrower spectral ranges. The SPIRIT EUV observations have enabled the study of various manifestations of solar activity and high-temperature events on the Sun. The data from the X-ray spectrometer RESIK, gamma spectrometer HELICON, flare spectrometer IRIS, amplitude–temporal spectrometer AVS-F, and X-ray spectrometer RPS-1 have been used to analyze the X- and gamma-ray emission from solar flares and for diagnostics of the flaring plasma. The absolute and relative content of various elements (such as potassium, argon, and sulfur) of solar plasma in flares has been determined for the first time with the X-ray spectrometer RESIK. The Solar Cosmic Ray Complex monitored the solar flare effects in the Earth’s environment. The UV emission variations recorded during solar flares in the vicinity of the 120-nm wavelength have been analyzed and the amplitude of relative variations has been determined.  相似文献   

13.
The MEAP (Mars Environment Analogue Platform) mission was to fly a stratospheric balloon on a semicircular trajectory around the North Pole in summer 2008. The balloon platform carried the high-resolution neutral gas mass spectrometer P-BACE (Polar Balloon Atmospheric Composition Experiment) as scientific payload. MEAP/P-BACE is a joint project between the Esrange Space Center, Sweden, the University of Bern, Switzerland and the Swedish Institute of Space Physics (IRF), Kiruna, Sweden. Mission objectives were to validate the platform for future long duration flights around the North pole, to validate the P-BACE instrument design for planetary mission applications (conditions in the Earth stratosphere are similar to the conditions at the Mars surface), to study variation of the stratospheric composition during the flight and to gain experience in balloon based mass spectrometry. All objectives were fulfilled.  相似文献   

14.
The Cosmic Ray Energetics And Mass (CREAM) instrument is configured with a suite of particle detectors to measure TeV cosmic-ray elemental spectra from protons to iron nuclei over a wide energy range. The goal is to extend direct measurements of cosmic-ray composition to the highest energies practical, and thereby have enough overlap with ground based indirect measurements to answer questions on cosmic-ray origin, acceleration and propagation. The balloon-borne CREAM was flown successfully for about 161 days in six flights over Antarctica to measure elemental spectra of Z = 1–26 nuclei over the energy range 1010 to >1014 eV. Transforming the balloon instrument into ISS-CREAM involves identification and replacement of components that would be at risk in the International Space Station (ISS) environment, in addition to assessing safety and mission assurance concerns. The transformation process includes rigorous testing of components to reduce risks and increase survivability on the launch vehicle and operations on the ISS without negatively impacting the heritage of the successful CREAM design. The project status, including results from the ongoing analysis of existing data and, particularly, plans to increase the exposure factor by another order of magnitude utilizing the International Space Station are presented.  相似文献   

15.
Cosmic radiation bombards us at high altitude with ionizing particles; the radiation has a galactic component, which is normally dominant, and a component of solar origin. Cosmic ray particles are the primary source of ionization in the atmosphere above 1 km; below 1 km radon is a dominant source of ionization in many areas.  相似文献   

16.
We find that the soft rigidity spectrum of the Galactic Cosmic Ray (GCR) intensity variations for the maximum epoch and the hard rigidity spectrum for the minimum epoch calculated based on the neutron monitors experimental data (1960–2002) are related with the various dependence of the diffusion coefficient on the GCR particle’s rigidity for different epoch of solar activity. This dependence is stronger in the maximum epoch than in the minimum epoch of solar activity, and is provided by the essential temporal rearrangements of the structure of the Interplanetary Magnetic Field (IMF) turbulence from the maxima to minima epoch of solar activity. We also show that the rigidity spectrum of GCR intensity variations is harder for the effective rigidities ∼(10–15) GV (by neutron monitors data), than for the effective rigidities ∼(25–30) GV (by neutron monitors and muon telescopes data). A general scenario of GCR modulation versus solar activity is settled on the essential temporal rearrangements of the structure of the IMF turbulence. Therefore, the temporal changes of the power law rigidity spectrum exponent can be considered as a vital (new) index to explain the 11-year variations of the GCR intensity. We assume that ∼(70–80)% of the changes of the amplitudes of the 11-year variations of GCR intensity is related with the changes of the IMF turbulence versus solar activity.  相似文献   

17.
The RV-2N-series instruments onboard Luna missions and the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument onboard Lunar Reconnaissance Orbiter (LRO) were designed to characterize the global lunar radiation environment and its biological impacts by measuring cosmic ray (CR) intensity. In this study, we have shown that the RV-2N-series instruments onboard of Russian Luna missions and the CRaTER reliably detect both background CRs and solar proton events (SPEs) in the lunar radiation environment using the proton intensity measured by the RV-2N-series onboard Luna missions out of the Russian Luna program for the exploration of the Moon (November 1970–August 1975) and the CR intensity on the Moon observed by the CRaTER (June 2009–March 2011). Those were compared with the CR intensities observed by neutron monitors (McMurdo, Thule, Oulu) on the Earth. The sunspot number is used as the index of solar activity (NOAA National Geophysical Data Center). As a result, the background CR intensities on the Moon turned out to have a good anti-correlation with the solar activity. We have also identified the proton intensity increasing events on the Moon which have the similar profiles to those observed by neutron monitors on the Earth. Most of these events show the significant increase of proton intensities in the lunar radiation environment when the SPEs associated with solar eruptions are verified. Therefore, most of the proton intensity increasing events are associated with the energetic solar particles in the lunar environment.  相似文献   

18.
Modern instrument-simulation techniques offer the possibility of increasing the scientific yield from archival space datasets. In this paper, we report on a simulation of the electron response of the University of Chicago’s Cosmic Ray Nuclei Experiment (CRNE) instrument on the IMP-8 satellite. IMP-8/CRNE returned data from 1973 to 2006. The CRNE particle telescope was designed to measure the isotopic composition of Galactic cosmic-ray (GCR) nuclei and has also been used in many studies of protons and ions above 10 MeV/nucleon from solar energetic particle (SEP) events. But CRNE also functions as a highly-capable detector for solar electrons above 0.5 MeV, an energy range that has not been extensively studied. Utilization of the CRNE electron data has heretofore been limited by the fact that CRNE was never calibrated for electrons. We have therefore used the GEANT4 Monte Carlo simulation package to model the CRNE response to electrons and (separately) protons for multiple energies and incident angles. The results were used to compute the energy- and angle-dependence of the effective area and the energy-dependence of the geometric factor. The response to protons, which was already well understood, was used to verify the mass model, the simulation settings, and the post-processing software. Our simulation of the IMP-8/CRNE electron response now allows analysis of hundreds of relativistic solar electron events observed by CRNE over the years, including studies of evolution of electron energy spectra with high time resolution. We show examples of these results and briefly discuss potential applications to future scientific investigations.  相似文献   

19.
We present a concept for a challenging in situ science mission to a primitive, binary near-Earth asteroid. A sub-400-kg spacecraft would use solar electric propulsion to rendezvous with the C-class binary asteroid (175706) 1996 FG3. A campaign of remote observations of both worlds would be followed by landing on the ∼1 km diameter primary to perform in situ measurements. The total available payload mass would be around 34 kg, allowing a wide range of measurement objectives to be addressed. This mission arose during 2004 from the activities of the ad-hoc Small Bodies Group of the DLR-led Planetary Lander Initiative. Although the particular mission scenario proposed here was not studied further per se, the experience was carried over to subsequent European asteroid mission studies, including first LEONARD and now the Marco Polo near-Earth asteroid sample return proposal for ESA’s Cosmic Vision programme. This paper may thus be of interest as much for insight into the life cycle of mission proposals as for the concept itself.  相似文献   

20.
Knowledge about the rotation properties of space debris objects is essential for the active debris removal missions, accurate re-entry predictions and to investigate the long-term effects of the space environment on the attitude motion change. Different orbital regions and object’s physical properties lead to different attitude states and their change over time.Since 2007 the Astronomical Institute of the University of Bern (AIUB) performs photometric measurements of space debris objects. To June 2016 almost 2000 light curves of more than 400 individual objects have been acquired and processed. These objects are situated in all orbital regions, from low Earth orbit (LEO), via global navigation systems orbits and high eccentricity orbit (HEO), to geosynchronous Earth orbit (GEO). All types of objects were observed including the non-functional spacecraft, rocket bodies, fragmentation debris and uncorrelated objects discovered during dedicated surveys. For data acquisition, we used the 1-meter Zimmerwald Laser and Astrometry Telescope (ZIMLAT) at the Swiss Optical Ground Station and Geodynamics Observatory Zimmerwald, Switzerland. We applied our own method of phase-diagram reconstruction to extract the apparent rotation period from the light curve. Presented is the AIUB’s light curve database and the obtained rotation properties of space debris as a function of object type and orbit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号