首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
An empirical model of electron density (Ne) was constructed by using the data obtained with an impedance probe on board Japanese Hinotori satellite. The satellite was in circular orbit of the height of 600 km with the inclination of 31 degrees from February 1981 to June 1982. The constructed model gives Ne at any local time with the time resolution of 90 min and between −25 and 25 degrees in magnetic latitude with its resolution of 5 degrees in the range of F10.7 from 150 to 250 under the condition of Kp < 4. Spline interpolations are applied to the functions of day of year, geomagnetic latitude and solar local time, and linear interpolation is applied to the function of F10.7. Longitude dependence of Ne is not taken into account. Our density model can reproduce solar local time variation of electron density at 600 km altitude better than current International Reference Ionosphere (IRI2001) model which overestimates Ne in night time and underestimates Ne in day time. Our density model together with electron temperature model which has been constructed before will enable more understanding of upper ionospheric phenomenon in the equatorial region.  相似文献   

2.
We analyzed the 150 × 150 lunar gravity field models, LP150Q, GLGM-3 and SGM150, using the power spectrum on the lunar nearside and farside, the lunar global and localized gravity/topography admittance and correlation, and Chang’E-2 precision orbit determination to investigate which model is a more effective tool to estimate geophysical parameters and determine the lunar satellite precision orbit. Results indicate that all gravity field models can be used to estimate the lunar geophysical parameters of the nearside of the Moon. However, SGM150 is better in such computation of the farside. Additionally, SGM150 is shown to be the most useful model for determining the lunar satellite orbit.  相似文献   

3.
We analyzed data from four different instruments (HI-SCALE, URAP, SWOOPS, VHM/FGM) onboard Ulysses spacecraft (s/c) and we searched for possible evidence of Jovian emissions when the s/c approached Jupiter during the times of Halloween events (closest time approach/position to Jupiter: February 5, 2004/R = 1683 RJ,θ = ∼49°). In particular, we analyzed extensively the low energy ion measurements obtained by the HI-SCALE experiment in order to examine whether low energy ion/electron emissions show a symmetry, and whether they are observed at north high latitudes upstream from the jovian bow shock, as is known to occur in the region upstream from the south bow shock as well ( Marhavilas et al., 2001). We studied the period from October 2003 to March 2004, as Ulysses moved at distances 0.8–1.2 AU from the planet at north Jovicentric latitudes <75°, and we present here an example of characteristic Jovian periodicities in the measurements around a CIR observed by Ulysses on days ∼348–349/2003 (R = 1894 RJ,θ = 72°). We show that Ulysses observed low energy ion (∼0.055–4.7 MeV) and electron (>∼40 keV) flux and/or spectral modulation with the Jupiter rotation period (∼10 h) as well as variations with the same period in solar wind parameters, radio and magnetic field directional data. In addition, characteristic strong ∼40 min periodic variations were found superimposed on the ∼10 h ion spectral modulation. Both the ∼10 h and ∼40 min ion periodicities in HI-SCALE measurements were present in several cases during the whole period examined (October 2003 to March 2004) and were found to be more evident during some special conditions, for instance during enhanced fluxes around the start (forward shock) and the end (reverse shock) of CIRs. We infer that the Jovian magnetosphere was triggered by the impact of the CIRs, after the Halloween events, and it was (a) a principal source of forward and reverse shock-associated ion flux structures and (b) the cause of generation of ∼10 h quasi-periodic magnetic field and plasma modulation observed by Ulysses at those times.  相似文献   

4.
The nanosatellite BLITS (Ball Lens In The Space) is the first object designed as a passive, spherical retroreflector of the Luneburg type, dedicated for Satellite Laser Ranging (SLR). The optical response of BLITS has been measured by the Graz 2 kHz SLR station and compared with the response of the classical retroreflector arrays (RRA) of the Low Earth Orbiting satellites such as ERS-2 and Stella. This work demonstrates that the optical response of BLITS is flat and featureless, comparable with the signature of a point-source or a flat target, and suggests that this innovative design will deliver a higher normal point (NP) accuracy (2.55 mm) than any other SLR target currently in orbit. The high reflectivity of the glassy BLITS (about 60% of the return rate from the multi-reflector Stella) is found to be decreasing by about 30% per year, probably due to the solar irradiation. Detailed analysis of the reflective half-shell demonstrates that a high return rate of SLR measurements can be achieved regardless of the incident angle of the laser beam, thus making the spherical lens a perfect successor of the classical RRA panels mounted on active satellites such as CHAMP, GOCE and GRACE.  相似文献   

5.
The purpose of this paper is to describe some unusual whistlers (doublets and triplets) and VLF hiss emission recorded simultaneously on February 18, 1998 during nighttime at a low latitude Indian ground station Jammu (geomag. lat., 22° 26′ N; L = 1.17), and to make some discussions about their origin. The detailed structures of the observed VLF hiss emission clearly show that these emissions confined to a narrow continuous frequency band. Some times the frequency of hiss band oscillates and subsequently touches the upper edge of the first whistler component of the doublet. Detailed structures of the dynamic spectra of whistler and VLF hiss emission are briefly presented. From the dispersion analysis of the whistler doublets and triplets, it is found that the individual whistlers of the doublets and triplets simultaneously observed on the same day are one-hop whistlers having propagation path along higher and closely spaced L-values. Our result also shows that VLF hiss has been generated in the equatorial region of higher L-values. Generation and propagation mechanisms are briefly discussed.  相似文献   

6.
The Space Environment Monitor (SEM) onboard the NOAA POES satellites has been measuring the near-Earth charged particle environment since 1978, providing an extensive database that can be used for studying the long-term behavior of this population of trapped particles. POES stands for Polar Orbiting Environmental Satellite. These satellites orbit at ∼840 km altitude and at an inclination of 98°. The SEM-1 instrument was flown on the POES satellites beginning in 1978 with TIROS-N and NOAA-6 in 1979 and continuing to NOAA-14 launched in 1995 with the exception of NOAA-9 and NOAA-11 (NOAA-13 failed shortly after launch). Its replacement, SEM-2, has flown on the POES NOAA-15, -16, and -17 satellites (from 1998). Here we present the results of a study on the statistical variations of the high-energy trapped proton environment. Among the detectors in SEM, the four SEM-2 omni-directional proton detectors for energies >16 MeV, >36 MeV, >70 MeV, and >140 MeV provide the data most relevant to this study.  相似文献   

7.
By the data on intensity-time profiles of the neutron capture line of 2.223 MeV we have studied some characteristics of two solar flares, 28 October 2003 and 20 January 2005 (INTEGRAL and CORONAS-F observations, respectively). The SINP code was applied making allowance for the main processes of neutron interactions and deceleration in the solar plasma, character of neutron source, losses of neutrons and density model of the solar atmosphere. Comparison of the computed time profiles of 2.223 MeV line with observed ones for the flare of 28 October 2003 confirms the results obtained earlier for three other flares. Namely, the effect of density enhancement (EDE) in the sub-flare region, as well as the variations (hardening) of accelerated particle spectrum in the course of the event have been confirmed. The usual modeling procedure by the SINP code, however, seems to be inapplicable to the event of 20 January 2005. Possible causes of density enhancements during some flares and peculiarities of the 20 January 2005 flare are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号