首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Stratospheric Observatory for Infrared Astronomy (SOFIA), a joint US/German project, is a 2.5-m infrared airborne telescope carried by a Boeing 747-SP that flies in the stratosphere at altitudes as high as 45,000 ft (13.72 km). This facility is capable of observing from 0.3 μm to 1.6 mm with an average transmission greater than 80% averaged over all wavelengths. SOFIA will be staged out of the NASA Dryden Flight Research Center aircraft operations facility at Palmdale, CA. The SOFIA Science Mission Operations (SMO) will be located at NASA Ames Research Center, Moffett Field, CA. First science flights began in 2010 and a full operations schedule of up to one hundred 8 to 10 hour-long flights per year will be reached by 2014. The observatory is expected to operate until the mid-2030s. SOFIA’s initial complement of seven focal plane instruments includes broadband imagers, moderate-resolution spectrographs that will resolve broad features due to dust and large molecules, and high-resolution spectrometers capable of studying the kinematics of atomic and molecular gas at sub-km/s resolution. We describe the SOFIA facility and outline the opportunities for observations by the general scientific community and for future instrumentation development. The operational characteristics of the SOFIA first-generation instruments are summarized. The status of the flight test program is discussed and we show First Light images obtained at wavelengths from 5.4 to 37 μm with the FORCAST imaging camera. Additional information about SOFIA is available at http://www.sofia.usra.edu and http://www.sofia.usra.edu/Science/docs/SofiaScienceVision051809-1.pdf.  相似文献   

2.
SOFIA is a planned 2.5 meter telescope to be installed in a Boeing 747 aircraft and operated at altitudes from 41,000 to 46,000 feet. It will permit routine measurement of infrared radiation inaccessible from the ground-based sites, and observation of astronomical objects and transient events from anywhere in the world. The concept is based on 18 years of experience with NASA's Kuiper Airborne Observatory (KAO), which SOFIA would replace.  相似文献   

3.
The Radio Observatory on the Lunar Surface for Solar studies (ROLSS) is a concept for a near-side low radio frequency imaging interferometric array designed to study particle acceleration at the Sun and in the inner heliosphere. The prime science mission is to image the radio emission generated by Type II and III solar radio burst processes with the aim of determining the sites at and mechanisms by which the radiating particles are accelerated. Specific questions to be addressed include the following: (1) Isolating the sites of electron acceleration responsible for Type II and III solar radio bursts during coronal mass ejections (CMEs); and (2) Determining if and the mechanism(s) by which multiple, successive CMEs produce unusually efficient particle acceleration and intense radio emission. Secondary science goals include constraining the density of the lunar ionosphere by searching for a low radio frequency cutoff to solar radio emission and constraining the low energy electron population in astrophysical sources. Key design requirements on ROLSS include the operational frequency and angular resolution. The electron densities in the solar corona and inner heliosphere are such that the relevant emission occurs at frequencies below 10 MHz. Second, resolving the potential sites of particle acceleration requires an instrument with an angular resolution of at least 2°, equivalent to a linear array size of approximately 1000 m. Operations would consist of data acquisition during the lunar day, with regular data downlinks. No operations would occur during lunar night.  相似文献   

4.
某飞行器上红外成像装置在工作过程中要承受强烈的振动和冲击等动载荷环境,为避免动态响应过大会对其内部红外探测器等精密组件造成不可逆的损坏,须对其进行阻尼减振设计。减振器作为飞行器上红外成像设备的重要部件之一,其作用是衰减外界环境传递到产品的振动,从而保证产品性能。通过介绍一种基于Ansys模态分析优化后的成像光学减振结构设计,有效改善了设备的工作环境,试验表明红外成像装置配备减振器的减振效率大于70%。  相似文献   

5.
We describe the design and calibration of the Far-Infrared Photometer (FIRP), one of four focal plane instruments on the Infrared Telescope in Space (IRTS). The FIRP will provide absolute photometry in four bands centered at 150, 250, 400, and 700 μm with spectral resolution λ/Δλ ≈ 3 and spatial resolution ΔΘ = 0.5 degrees. High sensitivity is achieved by using bolometric detectors operated at 300 mK in an AC bridge circuit. The closed-cycle 3He refrigerator can be recycled in orbit. A 2 K shutter provides a zero reference for each field of view. More than 10% of the sky will be surveyed during the ≈3 week mission lifetime with a sensitivity of <10−13 W·cm−2·sr−1 per 0.5 degree pixel.  相似文献   

6.
The detection of methane on Mars has been reported by three different teams in 2004. Two of them used ground-based high-resolution spectroscopy in the near infrared range. The third one used the Planetary Fourier Spectrometer aboard Mars Express. Among the data sets, two of them reported a mean CH4 mixing ratio of 10 ppb. However, these are marginal detections, which should be considered as tentative. The third (ground-based) data set, unpublished so far, seems to show evidence for strong localized sources of CH4, corresponding to mixing ratios as high as 250 ppb in some cases. However, the high values reported in 2003 were not confirmed by subsequent observations performed by the PFS instrument in 2004. In the absence of a refereed publication, it is difficult to judge if the high values are indeed correct. Assuming that they are, the lack of their confirmation by the PFS could have several explanations, including, among others, localized transient vents, or time variations in the methane destruction rate. A biogenic source was first suggested for the martian methane. However, later studies showed that an abiotic source such as hydrogeology can be just as effective. Further dedicated observations are obviously needed to firm up the detection and distribution of methane on Mars.  相似文献   

7.
Future of Space Astronomy: A global Road Map for the next decades   总被引:1,自引:0,他引:1  
The use of space techniques continues to play a key role in the advance of astrophysics by providing access to the entire electromagnetic spectrum from radio to high energy γ rays. The increasing size, complexity and cost of large space observatories places a growing emphasis on international collaboration. Furthermore, combining existing and future datasets from space and “ground based” observatories is an emerging mode of powerful and relatively inexpensive research to address problems that can only be tackled by the application of large multi-wavelength observations. While the present set of astronomical facilities is impressive and covers the entire electromagnetic spectrum, with complementary space and “ground based” telescopes, the situation in the next 10–20 years is of critical concern. The James Webb Space Telescope (JWST), to be launched not earlier than 2018, is the only approved future major space astronomy mission. Other major highly recommended space astronomy missions, such as the Wide-field Infrared Survey Telescope (WFIRST), the International X-ray Observatory (IXO), Large Interferometer Space Antenna (LISA) and the Space Infrared Telescope for Cosmology and Astrophysics (SPICA), have yet to be approved for development.  相似文献   

8.
The World Space Observatory Ultraviolet (WSO/UV) is a multi-national project grown out of the needs of the astronomical community to have future access to the UV range. WSO/UV consists of a single UV telescope with a primary mirror of 1.7 m diameter feeding the UV spectrometer and UV imagers. The spectrometer comprises three different spectrographs, two high-resolution echelle spectrographs (the High-Resolution Double-Echelle Spectrograph, HIRDES) and a low-dispersion long-slit instrument. Within HIRDES the 102–310 nm spectral band is split to feed two echelle spectrographs covering the UV range 174–310 nm and the vacuum-UV range 102–176 nm with high spectral resolution (R > 50,000). The technical concept is based on the heritage of two previous ORFEUS SPAS missions. The phase-B1 development activities are described in this paper considering performance aspects, design drivers, related trade-offs (mechanical concepts, material selection etc.) and a critical functional and environmental test verification approach. The current state of other WSO/UV scientific instruments (imagers) is also described.  相似文献   

9.
10.
The Earth’s albedo is one of the least studied fundamental climate parameters. The albedo is a bi-directional variable, and there is a high degree of anisotropy in the light reflected from a given terrestrial surface. However, simultaneously observing from all points on Earth at all reflecting angles is a practical impossibility. Therefore, all measurements from which albedo can be inferred require assumptions and/or modeling to derive a good estimate. Nowadays, albedo measurements are taken regularly either from low Earth orbit satellite platforms or from ground-based measurements of the earthshine from the dark side of the Moon. But the results from these different measurements are not in satisfactory agreement. Clearly, the availability of different albedo databases and their inter-comparisons can help to constrain the assumptions necessary to reduce the uncertainty of the albedo estimates. In recent years, there has been a renewed interest in the development of robotic and manned exploration missions to the Moon. Returning to the Moon will enable diverse exploration and scientific opportunities. Here we discuss the possibility of a lunar-based Earth radiation budget monitoring experiment, the Lunar Terrestrial Observatory, and evaluate its scientific and practical advantages compared to the other, more standard, observing platforms. We conclude that a lunar-based terrestrial observatory can enable advances in Earth sciences, complementary to the present efforts, and to our understanding of the Earth’s climate.  相似文献   

11.
A new neural network (NN) based global empirical model for the F2 peak electron density (NmF2) has been developed using extended temporal and spatial geophysical relevant inputs. Measured ground based ionosonde data, from 84 global stations, spanning the period 1995 to 2005 and, for a few stations from 1976 to 1986, obtained from various resources of the World Data Centre (WDC) archives (Space Physics Interactive Data Resource SPIDR, the Digital Ionogram Database, DIDBase, and IPS Radio and Space Services) have been used for training a NN. The training data set includes all periods of quiet and disturbed magnetic activity. A comprehensive comparison for all conditions (e.g., magnetic storms, levels of solar activity, season, different regions of latitudes, etc.) between foF2 value predictions using the NN based model and International Reference Ionosphere (IRI) model (including both the International Union of Radio Science (URSI) and International Radio Consultative Committee (CCIR) coefficients) with observed values was investigated. The root-mean-square (RMS) error differences for a few selected stations are presented in this paper. The results of the foF2 NN model presented in this work successfully demonstrate that this new model can be used as a replacement option for the URSI and CCIR maps within the IRI model for the purpose of F2 peak electron density predictions.  相似文献   

12.
A new version of global empirical model for the ionospheric propagation factor, M(3000)F2 prediction is presented. Artificial neural network (ANN) technique was employed by considering the relevant geophysical input parameters which are known to influence the M(3000)F2 parameter. This new version is an update to the previous neural network based M(3000)F2 global model developed by Oyeyemi et al. (2007), and aims to address the inadequacy of the International Reference Ionosphere (IRI) M(3000)F2 model (the International Radio Consultative Committee (CCIR) M(3000)F2 model). The M(3000)F2 has been found to be relatively inaccurate in representing the diurnal structure of the low latitude region and the equatorial ionosphere. In particular, the existing hmF2 IRI model is unable to reproduce the sharp post-sunset drop in M(3000)F2 values, which correspond to a sharp post-sunset peak in the peak height of the F2 layer, hmF2. Data from 80 ionospheric stations globally, including a good number of stations in the low latitude region were considered for this work. M(3000)F2 hourly values from 1987 to 2008, spanning all periods of low and high solar activity were used for model development and verification process. The ability of the new model to predict the M(3000)F2 parameter especially in the low latitude and equatorial regions, which is known to be problematic for the existing IRI model is demonstrated.  相似文献   

13.
For decades, clouds have remained a central open question in understanding the climate system of Venus. We have developed a new microphysical model for the clouds of Venus that we describe in this paper. The model is a modal aerosol dynamical model that treats the formation and evolution of sulfuric acid solution droplets with a moderate computational cost. To this end, the microphysical equations are derived to describe the evolution of the size distribution of the particles using the moments of the distribution. We describe the derivation of the equations and their implementation in the model. We tested each microphysical process of the model separately in conditions of the Venus’ atmosphere and show that the model behaves in a physically sound manner in the tested cases. The model will be coupled in the future with a Venus Global Climate Model and used for elucidating the remaining mysteries.  相似文献   

14.
Binary or multiple stellar systems, constituting almost a third of the content of the Milky Way, represent a high priority astronomical target due to their repercussions on the stellar dynamical and evolutionary parameters. Moreover the spectral study of such class of stars allows to better constrain the evolutionary theories of the Galactic stellar populations. By resolving the members of stellar systems through photometric observations we are able to perform more detailed measurements to infer their mass. In this paper we investigate the feasibility of a cubesat based mission including an optical payload to directly optically discriminate the members of a selected sample of binary systems. The scientific targets, consisting 11?M class dwarf stars binary systems, have been extracted from the already studied Riaz catalogue. These subset has been selected considering the star distance, the members angular separation, and the distance from the Galactic plane (due to limit the background and foreground contamination). The satellite concept is based on a 6 unit Cubesat embedding some commercial off the shelf components and an ad hoc designed optical payload occupying almost 4 units. The optical configuration has been chosen in order to fit the angular resolution requirements, as derived from the target characteristics. Moreover, according to the optical analysis and the computed field of view some requirements on the attitude control system have been inferred and fulfilled by the component selection. The paper is organized as in the following: a brief scientific introduction is made; consequently the project is described with particular attention to the optical design and the standard sub-systems; finally the conclusions are drawn and the future perspectives are investigated.  相似文献   

15.
Research on empirical or physical models of ionospheric parameters is one of the important topics in the field of space weather and communication support services. To improve the accuracy of predicting the monthly median ionospheric propagating factor at 3000 km of the F2 layer (identified as M(3000)F2) for high frequency radio wave propagation, a model based on modified orthogonal temporal–spatial functions is proposed. The proposed model has three new characteristics: (1) The solar activity parameters of sunspot number and the 10.7-cm solar radio flux are together introduced into temporal reconstruction. (2) Both the geomagnetic dip and its modified value are chosen as features of the geographical spatial variation for spatial reconstruction. (3) A series of harmonic functions are used to represent the M(3000)F2, which reflects seasonal and solar cycle variations. The proposed model is established by combining nonlinear regression for three characteristics with harmonic analysis by using vertical sounding data over East Asia. Statistical results reveal that M(3000)F2 calculated by the proposed model is consistent with the trend of the monthly median observations. The proposed model is better than the International Reference Ionosphere (IRI) model by comparison between predictions and observations of six station, which illustrates that the proposed model outperforms the IRI model over East Asia. The proposed method can be further expanded for potentially providing more accurate predictions for other ionospheric parameters on the global scale.  相似文献   

16.
Mixtures of molecular nitrogen and methane have been identified in numerous outer Solar Systemices including the icy surfaces of Pluto and Triton. We have simulated the interaction of ionizing radiation in the Solar System by carrying out a radiolysis experiment on a methane – molecular nitrogen ice mixture with energetic electrons. We have identified the hydrogen cyanide molecule as the most prominent carbon–nitrogen-bearing reaction product formed. Upon warming the irradiated sample, we followed for the first time the kinetics and temporal evolution of the underlying acid–base chemistry which resulted in the formation of the cyanide ion from hydrogen cyanide. On the surfaces of Triton and Pluto and on comets in Oort’s cloud this sort of complex chemistry is likely to occur. In particular, hydrogen cyanide can be produced in low temperature environments (Oort cloud comets) and may be converted into cyanide ions once the comets reach the warmer regions of the Solar System.  相似文献   

17.
Soybean [Glycine max (L.) Merr.] is one of the plant species selected within the European Space Agency (ESA) Micro-Ecological Life Support System Alternative (MELiSSA) project for hydroponic cultivation in Biological Life Support Systems (BLSSs), because of the high nutritional value of seeds. Root symbiosis of soybean with Bradirhizobium japonicum contributes to plant nutrition in soil, providing ammonium through the bacterial fixation of atmospheric nitrogen. The aim of this study was to evaluate the effects of two hydroponic systems, Nutrient Film Technique (NFT) and cultivation on rockwool, and two nitrogen sources in the nutrient solution, nitrate (as Ca(NO3)2 and KNO3) and urea (CO(NH2)2), on root symbiosis, plant growth and seeds production of soybean. Plants of cultivar ‘OT8914’, inoculated with B. japonicum strain BUS-2, were grown in a growth chamber, under controlled environmental conditions.  相似文献   

18.
The life on Mars remains an open question because of the lack of proof of its past emergence and its current presence. The only indices of a potential Martian life were provided by the Viking Landers, and the study of the Martian meteorite ALH84001 discovered in the Antarctic. In the two case, the results of experiments could be explained either by the presence of life forms or by abiotic processes. The recent data of Mars Express orbiter and Mars Exploration Rovers show different proofs of a past environment favourable for life. Among the targets we seek, the organic molecules are primordial because they are necessary to the origin of life. A key question is to know if they are present, in which concentration and under which form. Within the framework of a search for organic, we are developing an experimental setup simulating as close as possible the environmental conditions of Mars surface in order to determine how organic species evolve. We present here the first step of the development of this experiment which focuses on the study of the impact of the solar UV radiations reaching the Mars surface on glycine. First results show that glycine does not resist if directly exposed to UV radiations.  相似文献   

19.
During the years 2002 and 2003, three closed system experiments were carried out in the "Laboratory Biosphere" facility located in Santa Fe, New Mexico. The program involved experimentation of "Hoyt" Soy Beans, (experiment #1) USU Apogee Wheat (experiment #2) and TU-82-155 sweet potato (experiment #3) using a 5.37 m2 soil planting bed which was 30 cm deep. The soil texture, 40% clay, 31% sand and 28% silt (a clay loam), was collected from an organic farm in New Mexico to avoid chemical residues. Soil management practices involved minimal tillage, mulching, returning crop residues to the soil after each experiment and increasing soil biota by introducing worms, soil bacteria and mycorrhizae fungi. High soil pH of the original soil appeared to be a factor affecting the first two experiments. Hence, between experiments #2 and #3, the top 15 cm of the soil was amended using a mix of peat moss, green sand, humates and pumice to improve soil texture, lower soil pH and increase nutrient availability. This resulted in lowering the initial pH of 8.0-6.7 at the start of experiment #3. At the end of the experiment, the pH was 7.6. Soil nitrogen and phosphorus has been adequate, but some chlorosis was evident in the first two experiments. Aphid infestation was the only crop pest problem during the three experiments and was handled using an introduction of Hyppodamia convergens. Experimentation showed there were environmental differences even in this 1200 cubic foot ecological system facility, such as temperature and humidity gradients because of ventilation and airflow patterns which resulted in consequent variations in plant growth and yield. Additional humidifiers were added to counteract low humidity and helped optimize conditions for the sweet potato experiment. The experience and information gained from these experiments are being applied to the future design of the Mars On Earth(R) facility (Silverstone et al., Development and research program for a soil-based bioregenerative agriculture system to feed a four person crew at a Mars base, Advances in Space Research 31(1) (2003) 69-75; Allen and Alling, The design approach for Mars On Earth(R), a biospheric closed system testing facility for long-term space habitation, American Institute of Aeronautics and Astronautics Inc., IAC-02-IAA.8.2.02, 2002).  相似文献   

20.
Monitoring of spatial and temporal distribution of chlorophyll (Chl-a) concentrations in the aquatic milieu is always challenging and often interesting. However, the recent advancements in satellite digital data play a significant role in providing outstanding results for the marine environmental investigations. The present paper is aimed to review ‘remote sensing research in Chinese seas’ within the period of 24 years from 1978 to 2002. Owing to generalized distributional pattern, the Chl-a concentrations are recognized high towards northern Chinese seas than the southern. Moreover, the coastal waters, estuaries, and upwelling zones always exhibit relatively high Chl-a concentrations compared with offshore waters. On the basis of marine Chl-a estimates obtained from satellite and other field measured environmental parameters, we have further discussed on the applications of satellite remote sensing in the fields of harmful algal blooms (HABs), primary production and physical oceanographic currents of the regional seas. Concerned with studies of HABs, satellite remote sensing proved more advantageous than any other conventional methods for large-scale applications. Probably, it may be the only source of authentic information responsible for the evaluation of new research methodologies to detect HABs. At present, studies using remote sensing methods are mostly confined to observe algal bloom occurrences, hence, it is essential to coordinate the mechanism of marine ecological and oceanographic dynamic processes of HABs using satellite remote sensing data with in situ measurements of marine environmental parameters. The satellite remote sensing on marine environment and HABs is believed to have a great improvement with popular application of technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号