首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a radiative/hydrodynamical mechanism for triggering AGN activity; the intensive radiation from a circumnuclear starburst drives the nuclear fueling due to the Poynting-Robertson (radiation drag) effects. When the starburst is in an early and therefore super-Eddington phase, the radiative flux force is likely to obstruct severely the mass accretion onto the nucleus (radiative blizzard phase). But, in a later sub-Eddington phase, the radiation flux force builds up a wall of dusty gas. The wall absorbs the radiation from the starburst regions and re-emits infrared radiation, which causes the disk accretion due to the Poynting-Robertson effect, consequently leading to nuclear fueling (radiative avalanche phase). The radiative avalanche could link to an advection-dominated accretion flow (ADAF) onto a putative supermassive black hole. The radiatively triggered nuclear activity diminishes as the starburst dims. In this context, the AGN type could be discriminated not only by the viewing angles but also by the evolution of a circumnuclear starbursts. Based on such a picture, we reconsider the AGN activity in luminous IRAS galaxies.  相似文献   

2.
The X-ray evolution of the luminosity of normal galaxies is primarily driven by the evolution of their X-ray binary populations. The imprints left by a cosmological evolution of the star formation rate (SFR) will cause the average X-ray luminosity of galaxies to appear higher in the redshift range 1–3. As reported by White and Ghosh [ApJ, 504 (1998) L31] the profile of X-ray luminosity with redshift can both serve as a diagnostic probe of the SFR profile and constrain evolutionary models for X-ray binaries. In order to observe the high redshift (z>3) universe in the X-ray band, it is necessary to avoid confusion from foreground field galaxies. We report on the predictions of these models of the X-ray flux expected from galaxies and the implications for the telescope parameters of future deep universe X-ray observatories.  相似文献   

3.
Observations of Seyfert galaxies in X-ray region reveal the wide emissive lines in their spectra, which can arise in inner parts of accretion disks, where the effects of General Relativity (GR) must be taken into account. A spectrum of a solitary emission line of a hot spot in Kerr accretion disk is simulated depending on the radial coordinate r and the angular momentum a = J/M of a black hole, under the assumption of equatorial circular motion of a hot spot. It is shown that the characteristic two-peak line profile with the sharp edges arises at a large distance (about r ≈ (3–10) rg). The inner regions emit the line, which is observed with one maximum and extremely wide red wing. We present results of simulations for the isothermal and Shakura–Sunayev disks.  相似文献   

4.
Relativistic jets are a common property of radio-loud Active Galactic Nuclei (AGN). Understanding jet physical properties is an essential precursor to understanding the mechanisms of energy transport, and ultimately, how energy is extracted from the central black hole. In this paper, I highlight recent developments from Chandra and HST observations of kpc-scale jets in AGN, with particular emphasis on our survey of 17 radio jets in a sample of FRII radio galaxies. These observations show that (1) X-ray and optical emission is common from kpc-scale jets, (2) a large fraction of the bolometric luminosity is emitted at X-rays, and (3) in most sources, a candidate emission process for the X-rays is inverse Compton scattering of the Cosmic Microwave Background off the relativistic electrons in the jet. If the latter scenario holds, the implication is that jets are still relativistic on kpc scales.  相似文献   

5.
We present the results of a systematic study of narrow-line Seyfert 1 galaxies (NLS1s) observed with XMM-Newton. The 2–12 keV X-ray spectra of NLS1s are well represented by a single power law with a photon index Γ ∼ 2. When this hard power law continuum is extrapolated into the low energy band, we found that all objects in our sample show prominent soft excess emission. This excess emission is well parameterized by the thermal emission expected from an optically thick accretion disk, and we found the following three peculiar features: (1) The derived disk temperatures are significantly higher than the expectation from a standard Shakura-Sunyaev accretion disk, if we assume a central mass of a black hole to be 106–8M. (2) The temperatures are distributed within narrow range (ΔkT ∼ 0.08 keV) with an average temperature of 0.18 keV in spite of the range of four orders of magnitude in luminosity (1041–45 erg s−1). (3) We found a peculiar temperature–luminosity relation, where the luminosity seems to be almost saturated in spite of the significant change in temperature, during the observations of the most luminous NLS1 PKS 0558-504. These results strongly suggest that the standard accretion disk picture is no longer appropriate in the nuclei of NLS1s. We discuss a possible origin for the soft excess component, and suggest that a slim disk may be able to explain the observational results, if the photon trapping effect is properly taken into account.  相似文献   

6.
An analysis of the variability timescale against bolometric luminosity for Active Galactic Nuclei shows that a number of sources violate the Eddington limit. The average ratio (L/LE) is found to change according to group classification. Whilst Seyfert Galaxies have luminosites well within the Eddington limit, Quasars and BL Lac object tend to approach and exceed this limit. Furthermore, BL Lac objects may be further subdivided on the basis of their (L/LE) ratio. The data on luminosity and variability timescale indicate the existence of two types of active galaxies, one having highly anisotropic emission, probably collimated into jets with pointing angles within few degrees to the line of sight, and the other relating to isotropic emission of photons from the nuclear region. The results are discussed in the light of the high γ-ray luminosity suggested by recent observations of active galaxies.  相似文献   

7.
To understand the connection among the subclasses of BL Lac Objects, FR I radio galaxies and Flat spectrum radio quasars (FSRQs), here the correlations of the bolometric luminosities with redshifts and brightness temperatures of these objects are studied. The bolometric luminosities vary linearly with redshifts, but few objects are scattered at high redshift. The bolometric luminosity versus brightness temperature distribution shows a correlation between these two components, except a few scattered objects, mostly RBLs. The bolometric luminosities and brightness temperatures of FR I radio galaxies with low redshift (<0.1) and low spectral index (αrx < 0.75) are comparable to those of XBLs and those characteristics of FR I radio galaxies, with relatively high redshift (>0.2) and high spectral index, can be comparable with RBLs with low redshift (z < 0.5) and low bolometric luminosity. Those scattered RBLs with high redshifts (z > 0.5) are believed to be in complex environment with companion galaxies, most of these RBLs are still unresolved. The bolometric luminosity and brightness temperature of these scattered RBLs are comparable to those of quasars. The FSRQs are at high redshifts and bolometric luminosities and the brightness temperatures are also high relative to BL Lac Objects. These results support the FRI/BL Lac unification scheme. It suggests that, the FR I radio galaxies may be the parent populations of the BL Lac Objects, but it needs more investigation to confirm the unification of FR I radio galaxies, XBLs and RBLs.  相似文献   

8.
We investigated properties of four isolated giant elliptical galaxies with extended X-ray halo using ASCA data. The derived size of X-ray halo, X-ray luminosity, and gravitational mass of the dark halo are unusually large those of X-ray halo of a single galaxy, but are typical for X-ray halos of groups and poor clusters of galaxies. The measured temperatures and abundances of the X-ray halo gas in these galaxies are also similar to those of the groups and poor clusters. Based on these results we identified these galaxies as “isolated X-ray overluminous elliptical galaxy” (IOLEG). The radial profiles of dark halo in these objects were derived from X-ray data. It is found that some are similar to those of compact groups while others are the same as those of normal ellipticals. The dark halos of lOLEGs are thus indistinguishable from those of groups (and poor clusters), which appears to be consistent with a widely believed idea that lOLEGs are a product of dynamical evolution of a compact group. However, mass-to-light ratios of IOLEGs (M200/LB  100–1000) are far greater than those of Hickson compact groups M200/LB  40–60). Since it is hard to consider that total optical luminosity of a compact group decreases by an order of magnitude in the course of dynamical evolution, such difference in the observed mass-to-light ratio between IOLEGs and Hickson compact groups strongly suggests that most IOLEGs have not evolved from compact groups which are observed at present.  相似文献   

9.
We investigate the dark matter distributions in the central region of two clusters of galaxies (A1835 and MKW3S) using Chandra data. N-body simulations in the standard cold dark matter (CDM) model predict the dark matter distribution shows a cuspy dark matter profile: ρ(r) ∝ r, with in the range 1–2, while observations of dwarf and low surface brightness galaxies seem to favor the presence of a relatively flat core: 0 <  < 1. To investigate the dark matter distributions in the central region of clusters of galaxies, we analyze the Chandra data of A1835 and MKW3S with a deprojection method. We derive the mass profiles without the assumption of analytical models. We examine the inner slope of derived mass profiles assuming the dark matter profile is described with a power-law expression. The values of the slope are 0.95 ± 0.10 for A1835 and 1.33 ± 0.12 for MKW3S within the radius of 200 kpc. These are consistent with the result of the CDM simulations. However, within the radius of 100 kpc, the value of is less than unity for A1835 (0.47 ± 0.31). Our result implies that the central dark matter profile of some clusters cannot be described by CDM halos.  相似文献   

10.
We present preliminary results from analyses of hard X-ray and optical observations of a soft X-ray selected sample. We created a small but complete sample with 20 of the softest and brightest objects with low Galactic absorption from the ROSAT bright soft X-ray selected radio-quiet AGN sample. This sample consists of 10 narrow-line Seyfert 1 galaxies and 10 broad-line Seyfert galaxies. We analyze ASCA data in the 0.6–10 keV band and optical spectra from ground-based telescopes. We investigate the photon indices in the hard X-ray band, soft excesses in the ASCA band, and optical emission line properties. The photon indices in the 2–10 keV band are nominal for both narrow-line Seyfert 1 galaxies and broad-line Seyfert 1 galaxies in each class compared with other heterogeneous samples. All of the narrow-line Seyfert 1 galaxies show soft excesses, but this component seems to be less significant for broad-line Seyfert 1 galaxies. There seems to be a trend of steeper X-ray spectra to be accompanied by narrower Hβ for narrow-line Seyfert 1 galaxies, but this is not extended to the larger velocity width regime of broad-line Seyfert 1 galaxies, and no clear trend is seen among them.  相似文献   

11.
We derive bias-corrected X-ray luminosity functions (XLFs) of LMXBs detected in 14 E and S0 galaxies observed with Chandra. After correcting for incompleteness, the individual XLFs are statistically consistent with a single power-law. A break at or near LX,Eddington , as previously reported, is not required in any individual case. The combined XLF with a reduced error, however, suggests a possible break at LX = 5 × 1038 erg s−1, which may be consistent with the Eddington luminosity of neutron stars with the largest possible mass (3 M), or of He-enriched neutron star binaries. We confirm that the total X-ray luminosity of LMXBs is correlated with the the near-IR luminosities, but the scatter exceeds that expected from measurement errors. The scatter in LX(LMXB)/LK appears to be correlated with the specific frequency of globular clusters, as reported earlier.

We cross-correlate X-ray binaries with globular clusters determined by ground-based optical and HST observations in 6 giant elliptical galaxies. With the largest sample reported so far (300 GC LMXBs with a 5:2 ratio between red and blue GCs), we compare their X-ray properties, such as X-ray hardness, XLF and LX/LB and find no statistically significance difference between different groups of LMXBs. Regardless of their association with GCs, both GC and field LMXBs appear to follow the radial profile of the optical halo light, rather than that of more extended GCs. This suggests that while metallicity is a primary factor in the formation of LMXBs in GCs, there may be a secondary factor (e.g., encounter rate) playing a non-negligible role.  相似文献   


12.
Recent multiwavelength monitoring of active galactic nuclei (AGN), particularly with the IUE satellite, has produced extraordinary advances in our understanding of the energy-generation mechanism(s) in the central engine and of the structure of the surrounding material. Examples discussed here include both ordinary AGN and blazars (the collective name for highly variable, radio-loud AGN like BL Lac objects and Optically Violently Variable quasars). In the last decade, efforts to obtain single-epoch multiwavelength spectra led to fundamentally new models for the structure of AGN, involving accretion disks for AGN and relativistic jets for blazars. Recent extensions of multiwavelength spectroscopy into the temporal domain have shown that while these general pictures may be correct, the details were probably wrong. Campaigns to monitor Seyfert 1 galaxies like NGC 4151, NGC 5548 and Fairall 9 at infrared, optical, ultraviolet and X-ray wavelengths indicate that broad-emission line regions are stratified by ionization, density, and velocity; argue against a standard thin accretion disk model; and suggest that X-rays represent primary rather than reprocessed radiation. For blazars, years of radio monitoring indicated emission from an inhomogeneous synchrotron-emitting plasma, which could also produce at least some of the shorter-wavelength emission. The recent month-long campaign to observe the BL Lac object PKS 2155-304 has revealed remarkably rapid variability that extends from the infrared through the X-ray with similar amplitude and little or no discernible lag. This lends strong support to relativistic jet models and rules out the proposed accretion disk model for the ultraviolet-X-ray continuum.  相似文献   

13.
The connection between normal and active galaxies is reviewed, by summarizing our progress on answering nine key questions. (1) Do all galaxies contain massive dark objects (MDOs)? (2) Are these MDOs actually supermassive black holes? (3) Why are the dark objects so dark? (4) Do all galaxies contain an Active Galactic Nucleus (AGN)? (5) Are the “dwarf AGN” really AGN? (6) Does AGN activity correlate with host galaxy properties? (7) How are AGN fuelled? (8) Is AGN activity related to starburst activity? (9) How do quasars relate to galaxy formation?  相似文献   

14.
There is growing evidence that the hard X-ray background (XRB) can be explained by a large population of obscured AGN. I review some of the results of recent deep X-ray surveys, and in particular I discuss the nature of the X-ray luminous emission-line galaxies which have emerged at the faintest X-ray fluxes. If obscured AGN do explain the XRB, a direct implication is that the majority of the energy produced by accretion in the universe is absorbed and not emitted directly. Deep submillimetre surveys with SCUBA have recently attracted a lot of attention, with the potential to allow us an unobscured view dust-enshrouded starformation at high redshift. It has generally been assumed that these sources are purely high redshift starforming galaxies, but if models for the XRB are correct then a significant fraction (∼20%) could contain a luminous AGN.  相似文献   

15.
We have statistically investigated the infrared luminosity of clusters of galaxies in comparison with the known tracers of the cluster mass like the X-ray luminosity and the cluster richness (e.g. the number of member galaxies). Our results show that there is a clear positive correlation of the infrared luminosity with the cluster mass. Quantitatively speaking, the infrared luminosity is on average 20 times higher than the X-ray luminosity. Moreover, the infrared luminosity increases with the redshift. This probably shows that a major part of this infrared luminosity is due to star formation in the member galaxies. Another possible contribution would be the thermal emission from dust particles in the diffuse intracluster medium. However our method does not allow us to infer conclusions about this second hypothesis. Depending on their size and abundance, such particles would contribute to the infrared luminosity of galaxy cluster and have an impact on the cooling function of the baryons and thus on the formation of the large scale structures. This is an important cosmological question which still remains open.  相似文献   

16.
High-energy, high-resolution in the spatial and energy domains is crucial to derive the geometrical distribution and the physical properties of gas and dust surrounding Active Galactic Nuclei (AGN). These are, in turn, basic ingredients of any serious attempt to build an AGN structure model. We present in this paper CIELO-AGN, the first catalogue of ionized emission lines detected in the soft X-ray spectra of a sample of 69 nearby obscured AGN. This catalogue has been implemented according to an IVOA data model, and can be accessed through VO-compatible applications.  相似文献   

17.
We have analyzed XMM-Newton archive data for five clusters of galaxies (redshifts 0.223–0.313) covering a wide range of dynamical states, from relaxed objects to clusters undergoing several mergers. We present here temperature maps of the X-ray gas together with a preliminary interpretation of the formation history of these clusters.  相似文献   

18.
The X-ray spectra of broad line active galactic nuclei of all types (Seyfert I's, NELG's, Broadline radio galaxies) is well fit by a power law in the .5–100 keV band of mean energy slope α = .68±.15. There is, as yet, no strong evidence for time variability of this slope in a given object. The constraints that this places on simple models of the central energy source are discussed. BL Lac objects have quite different X-ray spectral properties and show pronounced X-ray spectral variability.On time scales longer than 12 hours most radio quiet AGN do not show strong, ΔI/I > .5, variability. The probability of variability of these AGN seems to be inversely related to their luminosity. However characteristic timescales for variability have not been measured for many objects. This general lack of variability may imply that most AGN are well below the Eddington limit. Radio bright AGN tend to be more variable on long, τ 6 month, timescales.  相似文献   

19.
20.
The growing evidence for supermassive black holes in the centres of nearby galaxies has brought into sharper focus the question of why elliptical galaxies, rich in hot gas, do not possess quasar-like luminosities. Recent studies suggest that the presence of advection-dominated accretion flows (ADAFs) with their associated low radiative efficiency, might provide a promising explanation for the observed quiescence of these systems. Here, we present new high-frequency radio observations of the three giant, low-luminosity elliptical galaxies NGC 4649, NGC 4472 and NGC 4636 obtained using the Very Large Array (VLA) and the sub-millimetre common-user bolometer array (SCUBA) on the James Clerk Maxwell Telescope (JCMT). The new radio limits disagree severely with the canonical ADAF predictions which significantly overestimate the observed flux. If the accretion in these objects occurs in an advection-dominated mode then our radio limits imply that the emission from their central regions must be suppressed. We present the possibility that the magnetic field in the flow is extremely low or that synchrotron emission is free-free absorbed by cold material in the accretion flow. We also discuss whether slow non-radiating accretion flows may drive winds/outflows to remove energy, angular momentum and mass so that the central densities, pressures and emissivities are much smaller than in a standard ADAF (Di Matteo et al. 1998).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号