共查询到9条相似文献,搜索用时 0 毫秒
1.
R. Spang L. Hoffmann A. Kullmann F. Olschewski P. Preusse P. Knieling S. Schroeder F. Stroh K. Weigel M. Riese 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
The Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere – New Frontiers (CRISTA-NF) experiment on board the Russian research aircraft Geophysica measures limb emission spectra with an unprecedented vertical and horizontal resolution in the 4–15 μm wavelength region. The IR spectra measured during the SCOUT-O3 Tropical Aircraft Campaign have been analysed with respect of cloud occurrence, cloud vertical and horizontal extent, cloud spatial structures and their utilisation for trace gas retrievals. In addition indicators for ice water content and optical thickness of the clouds have been adopted. These new kinds of measurements in the upper troposphere/lower stratosphere region are especially valuable for the design and development of future space borne high resolution limb sounders. 相似文献
2.
J. Stum A. Delepoulle P. Sicard A. Guillot T. Guinle 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
This paper presents improvements of a method (Stum et al., 2011) aimed at computing the water vapor path delay correction of altimeter sea surface height, using total precipitable water measurements from scanning microwave radiometers. The main interest of this improved method is for the Cryosat-2 mission over the ocean. Focus is made on the applicability of the method in near real time. An experiment to produce an operational path delay correction for Jason-2 and Cryosat-2 Interim Geophysical Data Records (IGDR) has been set up. Results confirm that the new correction, although less accurate than the one attainable with an embarked radiometer, improves the Cryosat-2 sea surface height accuracy. 相似文献
3.
Javier Epeloa Amalia Meza 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(4):1025-1034
The aim of this study is retrieving atmospheric total column water vapor (CWV) over land surfaces using a microwave radiometer (MWR) onboard the Scientific Argentine Satellite (SAC-D/Aquarius). To research this goal, a statistical algorithm is used for the purpose of filtering the study region according to the climate type.A log-linear relationship between the brightness temperatures of the MWR and CWV obtained from Global Navigation Satellite System (GNSS) measurements was used. In this statistical algorithm, the retrieved CWV is derived from the Argentinian radiometer’s brightness temperature which works at 23.8?GHz and 36.5?GHz, and taking into account CWVs observed from GNSS stations belonging to a region sharing the same climate type. We support this idea, having found a systematic effect when applying the algorithm; it was generated for one region using the previously mentioned criteria, however, it should be applied to additional regions, especially those with other climate types.The region we analyzed is in the Southeastern United States of America, where the climate type is Cfa (Köppen - Geiger classification); this climate type includes moist subtropical mid-latitude climates, with hot, muggy summers and frequent thunderstorms. However, MWR only contains measurements taken from over ocean surfaces; therefore the determination of water vapor over land is an important contribution to extend the use of the SAC-D/Aquarius radiometer measurements beyond the ocean surface. The CWVs computed by our algorithm are compared against radiosonde CWV observations and show a bias of about ?0.6?mm, a root mean square (rms) of about 6?mm and a correlation of 0.89. 相似文献
4.
P.K. Karmakar M. Maiti S. Sett C.F. Angelis L.A.T. Machado 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
A multi-channel microwave radiometre (make: Radiometrics Corporation) is installed at Instituto Nacional de Pesquisas Espaciais–INPE, Brazil (22°S). The radiometric output of two channels of the radiometer in the form of brightness temperature at 23.834 GHz and 30 GHz, initially, were used to find out the ambient water vapor content and the non-precipitable cloud liquid water content. The necessary algorithm was developed for the purpose. The best results were obtained using the hinge frequency 23.834 GHz and 30 GHz pair having an r.m.s. error of only 2.64. The same methodology was then adopted exploiting 23.034 GHz and 30 GHz pair. In that case the r.m.s. error was 3.42. These results were then compared with those obtained over Kolkata (22°N), India, by using 22.234 GHz and 31.4 GHz radiometric data. This work conclusively suggests the use of a frequency should not be at the water vapor resonance line. Instead, while measuring the vapor content for separation of vapor and cloud liquid, one of them should be a few GHz left or right from the resonance line i.e., at 23.834 GHz and the other one should be around 30 GHz. 相似文献
5.
Shaoqi Gong Daniel Fiifi Hagan Jing Lu Guojie Wang 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(1):413-425
The precipitable water vapor is one of the most active gases in the atmosphere which strongly affects the climate. China's second-generation polar orbit meteorological satellite FY-3A equipped with a Medium Resolution Spectral Imager (MERSI) is able to detect atmospheric water vapor. In this paper, water vapor data from AERONET, radiosonde and MODIS were used to validate the accuracy of the MERSI water vapor product in the different seasons and climatic regions of East Asia. The results show that the values of MERSI water vapor product are relatively lower than that of the other instruments and its accuracy is generally lower. The mean bias (MB) was ?0.8 to ?12.7?mm, the root mean square error (RMSE) was 2.2–17.0?mm, and the mean absolute percentage error (MAPE) varied from 31.8% to 44.1%. On the spatial variation, the accuracy of MERSI water vapor product in a descending order was from North China, West China, Japan -Korea, East China, to South China, while the seasonal variation of accuracy was the best for winter, followed by spring, then in autumn and the lowest in summer. It was found that the errors of MERSI water vapor product was mainly due to the low accuracy of radiation calibration of the MERSI absorption channel, along with the inaccurate look-up table of apparent reflectance and water vapor within the water vapor retrieved algorithm. In addition, the surface reflectance, the mixed pixels of image cloud, the humidity and temperature of atmospheric vertical profile and the haze were also found to have affected the accuracy of MERSI water vapor product. 相似文献
6.
Hao Wang Ming Wei Guoping Li Shenghui Zhou Qingfeng Zeng 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
The rainfall process of Chengdu region in autumn has obvious regional features. Especially, the night-time rain rate of this region in this season is very high in China. Studying the spatial distribution and temporal variation of regional atmospheric precipitable water vapor (PWV) is important for our understanding of water vapor related processes, such as rainfall, evaporation, convective activity, among others in this area. Since GPS detection technology has the unique characteristics, such as all-weather, high accuracy, high spatial and temporal resolution as well as low cost, tracking and monitoring techniques on water vapor has achieved rapid developments in recent years. With GPS–PWV data at 30-min interval gathered from six GPS observational stations in Chengdu region in two autumns (September 2007–December 2007 and September 2008–December 2008), it is revealed that negative correlations exist between seasonally averaged value of GPS–PWV as well as its variation amplitude and local terrain altitude. The variation of PWV in the upper atmosphere of this region results from the water vapor variation from surface to 850 hPa. With the help of Fast Fourier Transform (FFT), it is found that the autumn PWV in Chengdu region has a multi-scale feature, which includes a seasonal cycle, 22.5 days period (quasi-tri-weekly oscillation). The variation of the GPS–PWV is related to periodical change in the transmitting of the water vapor caused by zonal and meridional wind strengths’ change and to the East Asian monsoon system. According to seasonal variation characteristics, we concluded that the middle October is the critical turning point in PWV content. On a shorter time scale, the relationship between autumn PWV and ground meteorological elements was obtained using the composite analysis approach. 相似文献
7.
Yong Wang Yanping Liu Lintao Liu Zengzhang Guo Xiaosan Ge Houze Xu 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
As a preliminary step for assessing the impact of global positioning system (GPS) refractive delay data in numerical weather prediction (NWP) models, the GPS zenith tropospheric delays (ZTD) are analyzed from 28 permanent GPS sites in the Chinese mainland. The objectives are to estimate the GPS ZTD and their variability in this area. The differences between radiosonde precipitable water vapor (PWV) and GPS PWV have a standard deviation of 4 mm in delay, a bias of 0.24 mm in delay, and a correlation coefficient of 0.94. The correlation between GPS ZTD and radiosonde PWV amounts to 0.89, indicating that the variety of tropospheric zenith delay can reflect the change of precipitable water vapor. The good agreement also guarantees that the information provided by GPS will benefit the NWP models. The time series of GPS ZTD, which were derived continuously from 2002 to 2004, are used to analyze the change of precipitable water vapor in Chinese mainland. It shows that the general trend of GPS ZTD is diminishing from the south-east coastland to the north-west inland, which is in accordance with the distribution of Chinese annual amount of rainfall. The temporal distribution of GPS ZTD in the Chinese mainland is that the GPS ZTD reaches maximum in summer, and it reaches minimum in winter. The long term differences between the observational data sources require further study before GPS derived data become useful for climate studies. 相似文献
8.
A.H. Maghrabi H.M. Al Dajani 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
Water vapor is the most important greenhouse gas. It plays a major role in the dynamics of atmospheric circulation, radiation exchange within the atmosphere, and climate variability. Knowledge of the distribution of water vapor is important for understanding climate change and global warming. 相似文献
9.
S. Choy C. Wang K. Zhang Y. Kuleshov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
The March 2010 Melbourne storm is used as a case study to examine the potential of using Global Positioning System (GPS) observations for studying the precipitable water vapour (PWV) field. The Victorian statewide GPS infrastructure network, i.e. GPSnet, was used in this study. GPSnet is currently the only statewide and densest GPS infrastructure network in Australia, which provides an excellent opportunity to examine the distribution of water vapour as the severe weather system passed over the state. Data from 15 GPSnet stations were processed over a one-week period, i.e. a few days prior to and after the storm passage, during which the course of the storm extended from the west to the southeast corner of the state. In addition, data from two radiosonde sites of the Australian Bureau of Meteorology Upper Air Network were used to compare and validate the GPS derived PWV measurements. The findings demonstrate that there is strong spatial and temporal correlation between variations of the ground-based GPS-PWV estimates and the passage of the storm over the state. This is encouraging as the ground-based GPS water vapour sensing technique can be considered as a supplemental meteorological sensor in studying severe weather events. The advantage of using ground-based GPS-PWV technique is that it is capable of providing continuous observation of the storm passage with high temporal resolution. The spatial resolution of the distribution of water vapour is dependent on the geographical location and density of the GPS stations. 相似文献