首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
This paper discusses the ability of the International Reference Ionosphere IRI-2007 storm time model to predict foF2 ionospheric parameter during geomagnetic storm periods. Experimental data (based on availability) from two low latitude stations: Vanimo (geographic coordinates, 2.7 °S, 141.3 °E, magnetic coordinates, 12.3 °S, 212.50 °E) and Darwin (geographic coordinates, 12.45 °S, 130.95 °E, magnetic coordinates, 22.9 °S, 202.7 °E) during nine storms that occurred in 2000 (Rz12 = 119), 2001(Rz12 = 111) and 2003 (Rz12 = 64) are compared with those obtained by the IRI-2007 storm model. The results obtained show that the percentage deviation between the experimental and IRI predicted foF2 values during these storm periods is as high as 100% during the main and recovery phases. Based on the values of “relative deviation module mean” (RDMM) obtained (i.e. between 0.08 and 0.60), it is observed that there is a reasonable to poor agreement between measured foF2 values and the IRI-storm model prediction values during main and recovery phases of the storms under investigation. As a result, in addition to other studies that have been carried out from different sectors, more studies are required to be carried out. This will enable IRI community to improve on the present performance of the model. In general the IRI-storm model predictions follow normal trend of the foF2 measured values but does not reproduce well the measured values.  相似文献   

2.
This paper presents results from the Storm-Time Ionospheric Correction Model (STORM) validation for selected Northern and Southern Hemisphere middle latitude locations. The created database incorporated 65 strong-to-severe geomagnetic storms, which occurred within the period 1995–2007. This validation included data from some ionospheric stations (e.g., Pruhonice, El Arenosillo) that were not considered in the development or previous validations of the model. Hourly values of the F2 layer critical frequency, foF2, measured for 5–7 days during the main and recovery phases of each selected storm were compared with the predicted IRI 2007 foF2 with the STORM model option activated. To perform a detailed comparison between observed values, medians and predicted foF2 values the correlation coefficient, the root-mean-square error (RMSE), and the percentage improvement were calculated. Results of the comparative analysis show that the STORM model captures more effectively the negative phases of the summer ionospheric storms, while electron density enhancement during winter storms and the changeover of the different storm phases is reproduced with less accuracy. The STORM model corrections are less efficient for lower-middle latitudes and severe geomagnetic storms.  相似文献   

3.
The effect of geomagnetic storms on the F2 region was studied by calculating the deviation, ΔfoF2, of foF2 during 40 magnetic storms, ranging from moderate (Dst < −50 nT) to very intense (Dst < −200 nT) of the 21st solar cycle. In order to study the variation of storm-time foF2 with latitude, season and storm strength, ionosonde data were obtained from eight stations spanning a latitudinal range of +60–−60°. The stations chosen lay in a narrow longitudinal range of 140–151°, so that local time difference between the stations is practically negligible. The features exhibited by positive and negative phases were essentially different. The storm time ΔfoF2 clearly exhibited a latitudinal variation and this variation were found to be coupled with the seasonal variation. As for the variation with storm intensity, though ΔfoF2 was found to vary even between two storms of almost equal intensity, the amplitude of a positive or negative phase, |ΔfoF2max| showed a distinct upper limit for each intensity category of storms.  相似文献   

4.
This study examines the response of the African equatorial ionospheric foF2 to different levels of geomagnetic storms, using the foF2 hourly data for the year 1989 from Ouagadougou (12.4°N, 1.5°W, dip: 2.8°N). The study also compares the observed data for the selected storm periods with the latest IRI model (IRI-2007). The foF2 values (both observed and predicted) show typical features of daytime peak and post-midnight minimum peak. The response of the ionospheric foF2 over Ouagadougou to storms events, during the night-time and post-midnight hours indicates negative responses of the ionospheric foF2, while that of the daytime hours indicates positive responses. For the investigation on the variability of the observed foF2 with respect to IRI-2007 model, with the exception of the analysis of the 20–22, October, 1989 data, where a midday peak was also observed on the first day, this study reveals two characteristic daily foF2 variability peaks: post-midnight and evening peaks. In addition, for all the geomagnetic storms considered, the URSI and CCIR coefficients of the IRI-2007 model show reasonable correspondence with each other, except for some few discrepancies. For instance, the event of 28–30 August, 1989 shows comparatively higher variability for the URSI coefficient, and at the foF2 peak values, the event of 20–22 October, 1989 shows that the CCIR coefficient is more susceptible to foF2 variability than the URSI coefficient. This study is aimed at providing African inputs for the future improvement of the IRI model.  相似文献   

5.
In this paper, the response of the equatorial and low latitude ionosphere to three intense geomagnetic storms occurred in 2002 and 2003 is reported. For that, critical frequency of F2-layer foF2 and the peak height hmF2 hmF2 for the stations Jicamarca (11.9°S), Ascension Is (7.92°S) and Tucuman (26.9°S) are used. The results show a “smoothing” of the Equatorial Anomaly structure during the development of the storms. Noticeable features are the increases in foF2 before the storm sudden commencement (SC) at equatorial latitudes and the southern crest of the Equatorial Anomaly. In some cases nearly simultaneous increases in foF2 are observed in response to the storm, which are attributed to the prompt electric field. Also, positive effects observed at equatorial and low latitudes during the development of the storm seem to be caused by the disturbance dynamo electric field due to the storm-time circulation. Increases in foF2 above the equator and simultaneous decreases in foF2 at the south crest near to the end of a long-duration main phase are attributed to equatorward-directed meridional winds. Decreases in foF2 observed during the recovery phase of storms are believed to be caused by composition changes. The results indicate that the prompt penetration electric field on the EA is important but their effect is of short lived. More significant ionospheric effects are the produced by the disturbance dynamo electric field. The role of storm-time winds is important because they modify the “fountain effect” and transport the composition changes toward low latitudes.  相似文献   

6.
Moderate geomagnetic storms occurred during January 22–25, 2012 period. The geomagnetic storms are characterized by different indices and parameters. The SYM-H value on January 22 increased abruptly to 67 nT at sudden storm commencement (SSC), followed by a sharp decrease to −87 nT. A second SSC on January 24 followed by a shock on January 25 was also observed. These SSCs before the main storms and the short recovery periods imply the geomagnetic storms are CME  -driven. The sudden jump of solar wind dynamic pressure and IMF BzBz are also consistent with occurrence of CMEs. This is also reflected in the change in total electron content (TEC) during the storm relative to quiet days globally. The response of the ionospheric to geomagnetic storms can also be detected from wave components that account for the majority of TEC variance during the period. The dominant coherent modes of TEC variability are diurnal and semidiurnal signals which account upto 83% and 30% of the total TEC variance over fairly exclusive ionospheric regions respectively. Comparison of TEC anomalies attributed to diurnal (DW1) and semidiurnal (SW2) tides, as well as stationary planetary waves (SPW1) at 12 UTC shows enhancement in the positive anomalies following the storm. Moreover, the impact of the geomagnetic storms are distinctly marked in the daily time series of amplitudes of DW1, SW2 and SPW1. The abrupt changes in amplitudes of DW1 (5 TECU) and SW2 (2 TECU) are observed within 20°S–20°N latitude band and along 20°N respectively while that of SPW1 is about 3 TECU. Coherent oscillation with a period of 2.4 days between interplanetary magnetic field and TEC was detected during the storm. This oscillation is also detected in the amplitudes of DW1 over EIA regions in both hemispheres. Eventhough upward coupling of quasi two day wave (QTDWs) of the same periodicity, known to have caused such oscillation, are detected in both ionosphere and upper stratosphere, this one can likely be attributed to the geomagnetic storm as it happens after the storm commencement. Moreover, further analysis has indicated that QTDWs in the ionosphere are strengthened as a result of coherent oscillation of interplanetary magnetic field with the same frequency as QTDWs. On the otherhand, occurrences of minor SSW and geomagnetic storms in quick succession complicated clear demarcation of attribution of the respective events to variability of QTDWs amplitudes over upper stratosphere.  相似文献   

7.
Severe geomagnetic storms and their effects on the 557.7 nm dayglow emission are studied in mesosphere. This study is primarily based on photochemical model with the necessary input obtained from a combination of experimental observations and empirical models. The model results are presented for a low latitude station Tirunelveli (8.7°N, 77.8°E). The volume emission rates are calculated using MSISE-90 and NRLMSISE-00 neutral atmospheric models. A comparison is made between the results obtained from these two models. A positive correlation amongst volume emission rate (VER), O, O2 number densities and Dst index has been found. The present results indicate that the variation in emission rate is more for MSISE-90 than in NRLMSISE-00 model. The maximum depletion in the VER of greenline dayglow emission is found to be about 30% at 96 km during the main phase of the one of the geomagnetic storms investigated in the case of MSISE-90 (which is strongest with Dst index −216 nT). The O2 density decreases about 22% at 96 km during the main phase of the same geomagnetic storm.The NRLSMSISE-00 model does not show any appreciable change in the number density of O during any of the two events. The present study also shows that the altitude of peak emission rate is unaffected by the geomagnetic storms. The effect of geomagnetic storm on the greenline nightglow emission has also been studied. It is found that almost no correlation can be established between the Dst index and variations in the volume emission rates using the NRLMSISE-00 neutral model atmosphere. However, a positive correlation is found in the case of MSISE-90 and the maximum depletion in the case of nightglow is about 40% for one of the storms. The present study shows that there are significant differences between the results obtained using MSISE-90 and NRLMSISE-00.  相似文献   

8.
Ionosonde data from two equatorial stations in the African sector have been used to study the signatures of four strong geomagnetic storms on the height – electron density profiles of the equatorial ionosphere with the objective of investigating the effects and extent of the effects on the three layers of the equatorial ionosphere. The results showed that strong geomagnetic storms produced effects of varying degrees on the three layers of the ionosphere. Effect of strong geomagnetic storms on the lower layers of the equatorial ionosphere can be significant when compared with effect at the F2-layer. Fluctuations in the height of ionization within the E-layer were as much as 0% to +20.7% compared to −12.5% to +8.3% for the F2-layer. The 2007 version of the International Reference Ionosphere, IRI-07 storm-time model reproduced responses at the E-layer but overestimated the observed storm profiles for the F1- and F2-layers.  相似文献   

9.
GPS satellites data obtained at Bhopal (23.16° N, 77.36° E, geomagnetic latitude 14.23° N) India were analyzed to study the TEC changes during several geomagnetic storms (−300 nT < Dst < −50 nT) occurred in 2005–2007. We had segregated the storms according to the Dst value, i.e. moderate storms (−100 nT < Dst ? −50 nT), strong storms (−150 nT < Dst < −100 nT), and severe storms (Dst less than −150 nT). Total of 21 geomagnetic storms (10 moderate, 9 strong, 2 severe) are considered for the present study. Deviation in vertical total electron content (VTEC) during the main phase of the storm was found to be associated with the prompt penetration of electric field originated due to the under-shielding and over-shielding conditions for almost all geomagnetic storms discussed in this paper. For most of the storms VTEC shows the positive percentage deviation during the main phase while it shows positive as well as the negative deviation during the recovery phase of the storms. The −80% deviation in VTEC was found for geomagnetic storm occurred on July 17, 2005 and the negative trend continued for recovery phase of the storm. This was mainly due to the thermospheric composition changes by Joule heating effect at auroral latitudes that generate electric field disturbance at low latitudes. Traveling ionospheric disturbances (TIDs) were responsible for the formation of wave like nature in VTEC for the storms occurred on May 15, 2005, whereas it was not observed for storm occurred on August 24, 2005.  相似文献   

10.
The ionospheric sounding observations using the Canadian Advanced Digital Ionosondes (CADIs) operational at Palmas (PAL; 10.2°S, 48.2°W; dip latitude 6.6°S; a near-equatorial station), and São José dos Campos (SJC, 23.2°S, 45.9°W; dip latitude 17.6°S; a low-latitude station located under the southern crest of the equatorial ionospheric anomaly), Brazil, are analyzed during the different seasons viz., winter (June and July 2003), spring (September and October 2003), summer (December 2003 and January 2004), and fall (March and April 2004). The period used has medium solar activity (sunspot number between 77.4 and 39.3). The seasonal mean variations (using only geomagnetically quiet days) of the ionospheric parameters foF2 (critical frequency of the F-region), hpF2 (virtual height at 0.834 foF2; considered to be close to hmF2 (peak height of the F-region)), and h’F (minimum virtual height of the F-region) are calculated and compared between PAL and SJC. The prominent differences between PAL and SJC are as follows: h’F variations show strong post-sunset enhancement at PAL during the seasons of spring, summer, and fall; hpF2 variations show pre-sunrise uplifting of the F-layer at both stations during all the seasons and the hpF2 values during the daytime are lower at SJC compared with PAL during all the seasons; the foF2 variations show mid-day bite-out at PAL during all the seasons and SJC shows strong equatorial ionospheric anomaly during summer and fall seasons. Also, the seasonal variations of the ionospheric parameters foF2 and hpF2 (with ±1 standard deviation) observed at PAL and SJC are compared with the IRI-2007 model results of foF2 and hmF2. In addition, variations of the foF2 and hpF2 observed at SJC are compared with the IRI-2001 model results of foF2 and hmF2. It should be pointed out that the ionospheric parameter hpF2 is much easier to obtain using computer program developed at UNIVAP compared with hmF2 (using POLAN program). During the daytime due to underlying ionization hpF2 estimated is higher (approximately 50 km) than the true peak height hmF2. During the nighttime hpF2 is fairly close to hmF2. The comparison between the foF2 variations observed at PAL and SJC with the IRI-2007 model results shows a fairly good agreement during all the seasons. However, the comparison between the hpF2 variations observed at PAL and SJC with the hmF2 variations with the IRI-2007 model results shows: (1) a fairly good agreement during the nighttime in all the seasons; (2) the model results do not show the pre-sunrise uplifting of the F-layer at PAL and SJC in any season; (3) the model results do not show the post-sunset uplifting of the F-layer at PAL; (4) considering that, in general, hpF2 is higher than hmF2 during the daytime by about 50 km, the model results are in good agreement at PAL and SJC during all the seasons except summer at SJC, when large discrepancies in the observed hpF2 and modeled hmF2 are observed. Also, it has been observed that, in general, hmF2 values for SJC calculated using IRI-2001 are higher than IRI-2007 during the daytime in winter, summer, and fall. However, hmF2 values for SJC calculated using IRI-2001, are lower than IRI-2007 during the nighttime in spring.  相似文献   

11.
Earthquake prediction stimulates the searches for a correlation between seismic activity and ionospheric anomalies. Contrary to common focuses on strong earthquakes, we report the ionospheric disturbances, 2 days before a moderate Ms = 4.7 Chongqing earthquake (29.4°N, 105.5°E, depth = 7.0 km, occurred at 21:21 LT, 10 September, 2010) with the data of ground-based ionosondes and IGS receivers. The data covering the period under the quiet geomagnetic conditions and a geomagnetic storm was analyzed with upper and lower bounds. It is found that there were significant enhancements of foF2 and total electron content (TEC) on the afternoon of 8 September, 2010, with a limited area close to the epicentre, which was different from the feature of ionospheric perturbations triggered by the geomagnetic storm on 15 September. Taking into account the heliogeomagnetical condition, we conclude that the observed ionospheric enhancements were very likely associated with the forthcoming moderate Chongqing earthquake, which implies that the relationship between the amplitudes of ionospheric disturbances and earthquakes is very complicated.  相似文献   

12.
Using the GPS ionospheric scintillation data at Hainan station (19.5°N, 109.1°E) in the eastern Asia equatorial regions and relevant ionospheric and geomagnetic data from July 2003 to June 2005, we investigate the response of L-band ionospheric scintillation activity over this region to different strong magnetic storm conditions (Dst < −100 nT) during the descending phase of the solar cycle. These strong storms and corresponding scintillations mainly took place in winter and summer seasons. When the main phase developed rapidly and reached the maximum near 20–21 LT (LT = UT + 8) after sunset, scintillations might occur in the following recovery phase. When the main phase maximum occurred shortly after midnight near 01–02 LT, following the strong scintillations in the pre-midnight main phase, scintillations might also occur in the post-midnight recovery phase. When the main phase maximum took place after 03 LT to the early morning hours no any scintillation could be observed in the latter of the night. Moreover, when the main phase maximum occurred during the daytime hours, scintillations could also hardly be observed in the following nighttime recovery phase, which might last until the end of recovery phase. Occasionally, scintillations also took place in the initial phase of the storm. During those scintillations associated with the nighttime magnetic storms, the height of F layer base (h’F) was evidently increased. However, the increase of F layer base height does not always cause the occurrence of scintillations, which indicates the complex interaction of various disturbance processes in ionosphere and thermosphere systems during the storms.  相似文献   

13.
This paper presents traveling ionospheric disturbances (TIDs) observations from GPS measurements over the South African region during the geomagnetically disturbed period of 29–31 October 2003. Two receiver arrays, which were along two distinct longitudinal sectors of about 18°-20° and 27°-28° were used in order to investigate the amplitude, periods and virtual propagation characteristics of the storm induced ionospheric disturbances. The study revealed a large sudden TEC increase on 28 October 2003, the day before the first of the two major storms studied here, that was recorded simultaneously by all the receivers used. This pre-storm enhancement was linked to an X-class solar flare, auroral/magnetospheric activities and vertical plasma drift, based on the behaviour of the geomagnetic storm and auroral indices as well as strong equatorial electrojet. Diurnal trends of the TEC and foF2 measurements revealed that the geomagnetic storm caused a negative ionospheric storm; these parameters were depleted between 29 and 31 October 2003. Large scale traveling ionospheric disturbances were observed on the days of the geomagnetic storms (29 and 31 October 2003), using line-of-sight vertical TEC (vTEC) measurements from individual satellites. Amplitude and dominant periods of these structures varied between 0.08–2.16 TECU, and 1.07–2.13 h respectively. The wave structures were observed to propagate towards the equator with velocities between 587.04 and 1635.09 m/s.  相似文献   

14.
Diurnal and seasonal variations of critical frequency of ionospheric F2-region ‘foF2’ and the height of peak density ‘hmF2’ are studied using modern digital ionosonde observations of equatorial ionization anomaly (EIA) crest region, Bhopal (23.2°N, 77.6°E, dip 18.5°N), during solar minimum period 2007. Median values of these parameters are obtained at each hour using manually scaled data during different seasons and compared with the International Reference Ionosphere-2001 model predictions. The observations suggest that on seasonal basis, the highest values of foF2 are observed during equinox months, whereas highest values of hmF2 are obtained in summer and lowest values of both foF2 and hmF2 are observed during winter. The observed median and IRI predicted values of foF2 and hmF2 are analyzed with upper and lower bound of inter-quartile range (IQR) and it is find out that the observed median values are well inside the inter-quartile range during the period of 2007. Comparison of the recorded foF2 and hmF2 values with the IRI-2001 output reveals that IRI predicted values exhibit better agreement with hmF2 as compared to foF2. In general, the IRI model predictions show some agreement with the observations during the year 2007. Therefore it is still necessary to implement improvements in order to obtain better predictions for EIA regions.  相似文献   

15.
The ionosphere induces a time delay in transionospheric radio signals such as the Global Positioning System (GPS) signal. The Total Electron Content (TEC) is a key parameter in the mitigation of ionospheric effects on transionospheric signals. The delay in GPS signal induced by the ionosphere is proportional to TEC along the path from the GPS satellite to a receiver. The diurnal monthly and seasonal variations of ionospheric electron content were studied during the year 2010, a year of extreme solar minimum (F10.7 = 81 solar flux unit), with data from the GPS receiver and the Digisonde Portable Sounder (DPS) collocated at Ilorin (Geog. Lat. 8.50°N, Long. 4.50°E, dip −7.9°). The diurnal monthly variation shows steady increases in TEC and F2-layer critical frequency (foF2) from pre-dawn minimum to afternoon maximum and then decreases after sunset. TEC show significant seasonal variation during the daytime between 0900 and 1900 UT (LT = UT + 1 h) with a maximum during the March equinox (about 35 TECU) and minimum during the June solstice (about 24 TECU). The GPS-TEC and foF2 values reveal a weak seasonal anomaly and equinoctial asymmetry during the daytime. The variations observed find their explanations in the amount of solar radiation and neutral gas composition. The measured TEC and foF2 values were compared with last two versions of the International Reference Ionosphere (IRI-2007 and IRI-2012) model predictions using the NeQuick and CCIR (International Radio Consultative Committee) options respectively in the model. In general, the two models give foF2 close to the experimental values, whereas significant discrepancies are found in the predictions of TEC from the models especially during the daytime. The error in height dependent thickness parameter, daytime underestimation of equatorial drift and contributions of electrons from altitudes above 2000 km have been suggested as the possible causes.  相似文献   

16.
The paper is focused on ionospheric response to occasional magnetic disturbances above selected ionospheric stations located at middle latitudes of the Northern and Southern Hemisphere under extremely low solar activity conditions of 2007–2009. We analyzed changes in the F2 layer critical frequency foF2 and the F2 layer peak height hmF2 against 27-days running mean obtained for different longitudinal sectors of both hemispheres for the initial, main and recovery phases of selected magnetic disturbances. Our analysis showed that the effects on the middle latitude ionosphere of weak-to-moderate CIR-related magnetic storms, which mostly occur around solar minimum period, could be comparable with the effects of strong magnetic storms. In general, both positive and negative deviations of foF2 and hmF2 have been observed independent on season and location. However positive effects on foF2 prevailed and were more significant. Observations of stormy ionosphere also showed large departures from the climatology within storm recovery phase, which are comparable with those usually observed during the storm main phase. The IRI STORM model gave no reliable corrections of foF2 for analyzed events.  相似文献   

17.
It is well known that during many but not all of the geomagnetic storms enhanced fluxes of high-energy electrons are observed in the outer radiation belt. Here we examine relativistic (>2 MeV) electron fluxes measured by GOES at the synchronous orbit and on-ground observations of two types of ULF pulsations during 30 magnetic storms occurred during 1996–2000. To characterize the effectiveness of the chosen magnetic storms in producing relativistic electron fluxes, following to (Reeves, G.D., McAdams, K.L., Friedel, R.H.W., O’Brien, T.R. Acceleration and loss of relativistic electrons during geomagnetic storms. Geophys. Res. Lett. 30, doi:10.1029/2002GL016513, 2003), we calculate a ratio of the maximum daily-averaged electron flux measured during the recovery phase, to the mean pre-storm electron flux. A storm is considered an effective one if its ratio exceeds 2. We compare behavior of Pi1 and Pc5 geomagnetic pulsations during effective and non-effective storms and find a tendency for a storm efficiency to be higher when the mid-latitude Pi1 pulsations are observed for a long time during the magnetic storm main phase. We note also that the prolonged powerful Pc5 pulsation activity during the recovery phase of a magnetic storm is the necessary condition for the storm effectiveness. To interpret the found dependences, we suggest that there are two prerequisites for generating relativistic electron populations during a storm: (1) the availability of seed electrons in the magnetosphere, and Pi1 emissions are indicators of the mid-energy electron interaction with the ionosphere and (2) acceleration of the seed electrons to MeV energies, and interaction of electrons with the MHD wave activity in the Pc5 range is one of the most probable mechanisms proposed in the literature for this purpose.  相似文献   

18.
This paper presents an analysis of the Total Electron Content (TEC) derived from the International GNSS Service receiver (formerly IGS) at Malindi (2.9°S, 40.1°E), Kenya for the periods 2004–2006 during the declining phase of solar cycle 23. The diurnal, monthly and seasonal variations of the TEC are compared with TEC from the latest International Reference Ionosphere model (IRI-2007). The GPS–TEC exhibits features such as an equatorial noon time dip, semi-annual variations, Equatorial Ionization Anomaly and day-to-day variability. The lowest GPS–TEC values are observed near the June solstice and September equinox whereas largest values are observed near the March equinox and December solstice. The mean GPS–TEC values show a minimum at 03:00 UT and a peak value at about 10:00 UT. These results are compared with the TEC derived from IRI-2007 using the NeQuick option for the topside electron density (IRI–TEC). Seasonal mean hourly averages show that IRI-2007 model TEC values are too high for all the seasons. The high prediction primarily occur during daytime hours till around midnight hours local time for all the seasons, with the highest percentage deviation in TEC of more 90% seen in September equinox and lowest percentage deviation in TEC of less than 20% seen in March equinox. Unlike the GPS–TEC, the IRI–TEC does not respond to geomagnetic storms and does overestimate TEC during the recovery phase of the storm. While the modeled and observed data do correlate so well, we note that IRI-2007 model is strongly overestimating the equatorial ion fountain effect during the descending phase of solar cycle, and this could be the reason for the very high TEC estimations.  相似文献   

19.
In this study, we use a great body of statistical data covering the entire 23rd solar cycle to cross test data of satellite altimeters, Global Ionosphere Maps and the International Reference Ionosphere models, IRI-2001 and IRI-2007. It is revealed that experimental TEC values of the satellite altimeters regularly exceed the model ones by ∼3 TECU (1 TECU = 1016 m−2). The best possible value of difference between TECs obtained from altimeter and GIM-map data significantly differs for different laboratories: the maximum for CODG data falls on 2.5 TECU, ESAG – 3 TECU, JPLG – 0 TECU, UPCG – 2 TECU. The dependence of experimental and model data root-mean-square deviation on the F10.7 index is shown to be nearly linear. IRI-2001 and IRI-2007 relative errors are characterized by considerable 11-year and annual variations. Given the geomagnetic planetary index Kp under 7, IRI-2001 and IRI-2007 reproduce TEC in the ionosphere with an accuracy of ∼30% relative to measurement data from satellite altimeters. The amplitude of absolute error variations resulting from the difference in ionization enhancement between the model and the real ionosphere during the morning solar terminator transit is ∼5 TECU.  相似文献   

20.
The relative importance of the main drivers of positive ionospheric storms at low-mid latitudes is studied using observations and modeling for the first time. In response to a rare super double geomagnetic storm during 07–11 November 2004, the low-mid latitude (17°–48°N geomag. lat.) ionosphere produced positive ionospheric storms in peak electron density (NmF2) in Japan longitudes (≈125°–145°E) on the day of main phase (MP1) onset (06:30 LT) and negative ionospheric storms in American longitudes (≈65°–120°W) on the following day of MP1 onset (13:00–16:00 LT). The relative effects of the main drivers of the positive ionospheric storms (penetrating daytime eastward electric field, and direct and indirect effects of equatorward neutral wind) are studied using the Sheffield University Plasmasphere Ionosphere Model (SUPIM). The model results show that the penetrating daytime (morning–noon) eastward electric field shifts the equatorial ionisation anomaly crests in NmF2 and TEC (total electron content) to higher than normal latitudes and reduces their values at latitudes at and within the anomaly crests while the direct effects of the equatorward wind (that reduce poleward plasma flow and raise the ionosphere to high altitudes of reduced chemical loss) combined with daytime production of ionisation increase NmF2 and TEC at latitudes poleward of the equatorial region; the later effects can be major causes of positive ionospheric storms at mid latitudes. The downwelling (indirect) effect of the wind increases NmF2 and TEC at low latitudes while its upwelling (indirect) effect reduces NmF2 and TEC at mid latitudes. The net effect of all main drivers is positive ionospheric storms at low-mid latitudes in Japan longitude, which qualitatively agrees with the observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号