首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present paper deals with observations of wave activity in the period range 1–60 min at ionospheric heights over the Western Cape, South Africa from May 2010 to July 2010. The study is based on the Doppler type sounding of the ionosphere. The Doppler frequency shift measurements are supplemented with measurements of collocated Digisonde DPS-4D at SANSA Space Sciences, Hermanus. Nine geomagnetically quiet days and nine geomagnetically active days were included in the study. Waves of periods 4–30 min were observed during the daytime independent of the level of geomagnetic activity. Amplitudes of 10–30 min waves always increased between 14:00 and 16:15 UT (16:00–18:15 LT). Secondary maxima were observed between 06:00 and 07:00 UT (08:00–09:00 LT). The maximum wave amplitudes occurred close to the time of passage of the solar terminator in the studied region which is known to act as a source of gravity waves.  相似文献   

2.
By using data from GPS receivers we detected huge-amplitude solitary large-scale traveling acoustic-gravity waves (LS AGW) which manifested themselves as perturbations of total electron content (TEC) of duration of about 40 min. Originated in the auroral area after significant alterations of geomagnetic field intensity during geomagnetic storms on 29–30 October 2003, LS disturbances propagated with a velocity about 1000–1200 m/s and caused generation of secondary small-scale (SS) waves with time period of 2–10 min. Such SS structure followed the solitary intensive AGW at a distance more than 4000 km. However, we observed such phenomenon only within the territory with high values of “vertical” TEC and steep gradients of TEC. Apparently, these conditions are necessary for generation of SS waves due to propagation of LS AGW.  相似文献   

3.
We present results of the spectral analysis of data series of Doppler frequency shifted signals reflected from the ionosphere, using experimental data received at Kazan University, Russia. Spectra of variations with periods from 1 min to 60 days have been calculated and analyzed for different scales of periods. The power spectral density for spring and winter differs by a factor of 3–4. Local maxima of variation amplitude are detected, which are statistically significant. The periods of these amplitude increases range from 6 to 12 min for winter, and from 24 to 48 min for autumn. Properties of spectra for variations with the periods of 1–72 h have been analyzed. The maximum of variation intensity for all seasons and frequencies corresponds to the period of 24 h. Spectra of variations with periods from 3 to 60 days have been calculated. The maxima periods of power spectral density have been detected by the MUSIC method for the high spectral resolution. The detected periods correspond to planetary wave periods. Analysis of spectra for days with different level of geomagnetic activity shows that the intensity of variations for days with a high level of geomagnetic activity is higher.  相似文献   

4.
There are two ways of external forcing of the lower ionosphere, the region below an altitude of about 100 km: (1) From above, which is directly or indirectly of solar origin. (2) From below, which is directly or indirectly of atmospheric origin. The external forcing of solar origin consists of two general factors – solar ionizing radiation variability and space weather. The solar ionization variability consist mainly from the 11-year solar cycle, the 27-day solar rotation and solar flares, strong flares being very important phenomenon in the daytime lower ionosphere due to the enormous increase of the solar X-ray flux resulting in temporal terminating of MF and partly LF and HF radio wave propagation due to heavy absorption of radio waves. Monitoring of the sudden ionospheric disturbances (SIDs – effects of solar flares in the lower ionosphere) served in the past as an important tool of monitoring the solar activity and its impacts on the ionosphere. Space weather effects on the lower ionosphere consist of many different but often inter-related phenomena, which govern the lower ionosphere variability at high latitudes, particularly at night. The most important space weather phenomenon for the lower ionosphere is strong geomagnetic storms, which affect substantially both the high- and mid-latitude lower ionosphere. As for forcing from below, it is caused mainly by waves in the neutral atmosphere, i.e. planetary, tidal, gravity and infrasonic waves. The most important and most studied waves are planetary and gravity waves. Another channel of the troposphere coupling to the lower ionosphere is through lightning-related processes leading to sprites, blue jets etc. and their ionospheric counterparts. These phenomena occur on very short time scales. The external forcing of the lower ionosphere has observationally been studied using predominantly ground-based methods exploiting in various ways the radio wave propagation, and by sporadic rocket soundings. All the above phenomena are briefly mentioned and some of them are treated in more detail.  相似文献   

5.
The study of the neutral sheet is of fundamental importance in understanding the dynamics of the Earth’s magnetosphere. From the earliest observation of the magnetotail, it has been found that the neutral sheet frequently appears to be in motion due to changing solar wind conditions and geomagnetic activity. Multiple crossings of the neutral sheet by spacecraft have been attributed to a flapping motion of the neutral sheet in the north–south direction, a wavy profile either along the magnetotail or the dawn–dusk direction. Cluster observations have revealed that the flapping motions of the Earth’s magnetotail are of internal origin and that kink-like waves are emitted from the central part of the tail and propagate toward the tail flanks. This flapping motion is shown here to propagate at an angle of ∼45° with xGSM. A possible assumption that the flapping could be created by a wake travelling away from a fast flow in the current sheet is rejected. Other waves in the magnetotail are found in the ULF range. One conjunction event between Cluster and DoubleStar TC1 is presented where all spacecraft show ULF wave activity at a period of approximately 5 min during fast Earthward flow. These waves are shown to be Kelvin–Helmholtz waves on the boundaries of the flow channel. Calculations show that the conversion of flow energy into magnetic energy through the Kelvin–Helmholtz instability can contribute to a significant part of flow breaking between Cluster and DoubleStar TC1.  相似文献   

6.
Analysing the initial mid-latitude aurora phase during strong geomagnetic storms we found that the initial phase of the mid-latitude aurorae observed at 630 nm emission during the strong geomagnetic storms on March 24, 1991, April 6, 2000, October 30 and November 20, 2003 is characterized by a short (∼1 h) wave-like disturbance. This disturbance corresponds to the beginning of main phase of the magnetic storms. The marked effect of the mid-latitude aurorae is analyzed using data on magnetosphere and ionosphere conditions in observation periods. The features of the dynamics of the 630 nm emission intensity and its connection with the dynamics of magnetospheric–ionospheric structures are considered. Possible excitation mechanisms of the atomic oxygen emission (630 nm) during these disturbances are discussed.  相似文献   

7.
The 22 min long decimetric type IV radio event observed during the decay phase of the June 6, 2000 flare simultaneously by the Brazilian Solar Spectroscope (BSS) and the Ond?ejov radiospectrograph in frequency range 1200–4500 MHz has been analyzed. We have found that the characteristic periods of about 60 s belong to the long-period spectral component of the fast wave trains with a tadpole pattern in their wavelet power spectra. We have detected these trains in the whole frequency range 1200–4500 MHz. The behavior of individual wave trains at lower frequencies is different from that at higher frequencies. These individual wave trains have some common as well as different properties. In this paper, we focus on two examples of wave trains in a loop segment and the main statistical parameters in their wavelet power and global spectra are studied and discussed.  相似文献   

8.
Post-sunset and pre-sunrise vertical plasma drifts at the equatorial F-region have been investigated using the HF Doppler radar and ionosonde observations. Observed vertical plasma drift features during the sunrise are found to complement that observed during the evening. The post-sunset vertical plasma drift is characterized by an upward enhancement, a pre-reversal enhancement and a reversal in the drift direction. Similarly, the pre-sunrise plasma drift is characterized by a sudden downward excursion followed by an upward turning. The wavelet analysis of the plasma drift shows the presence of fluctuations in the period range 4–32 min and the short period fluctuations are attributed to the atmospheric gravity waves.  相似文献   

9.
Intense (n + 1/2) fce emissions are a common phenomenon observed in the terrestrial inner magnetosphere. One of their interests is their possible effect in the pitch angle scattering of plasmasheet keV-electron, leading to diffuse auroras. In this paper, we present CLUSTER’s point of view about this topic, in the equatorial region of the plasmasphere, via a statistical study using 3 years of data. Spectral characteristics of these waves, which represent an important clue concerning their generation mechanism, are obtained using WHISPER data near perigee. Details on the wave spectral signature are shown in an event study, in particular their splitting in fine frequency bands. The orbit configuration of the four spacecraft offers a complete sampling on all MLT sectors. A higher occurrence rate of the emissions in the dawn sector and their confinement to the geomagnetic equator, pointed out in previous studies, are confirmed and described with additional details. The proximity of emission sites, both to the plasmapause layer and to the geomagnetic equator surface, seems to be of great importance in the behaviour of the (n + 1/2) fce wave characteristics. Our study indicates for the first time, that both the intensity of (n + 1/2) fce emissions, and the number of harmonic bands they cover, are increasing as the observation point is located further away outside from the plasmapause layer. Moreover, a study of the wave intensity in the first harmonic band (near 3/2 fce) shows higher amplitude for these emissions than previous published values, these emissions can play a role in the scattering of hot electrons. Finally, geomagnetic activity influence, studied via time series of the Dst index preceding observations, indicates that (n + 1/2) fce emission events are observed at CLUSTER position under moderate geomagnetic activity conditions, no specific Dst time variation being required.  相似文献   

10.
We show examples of long period Pc5 magnetic field pulsations near field-aligned current (FAC) regions in the high-latitude magnetosphere, observed by INTERBALL-Au, and coordinated with POLAR, GOES-9 and ground-based observations during 11 January and 11 April 1997. Identification of corresponding magnetosphere regions and subregions is provided by electrons and protons in the energy-range of 0.01–100 keV measured onboard the spacecraft. The ULF Pc5 wave occurrence is observed in both upward and downward FACs. A fairly good correlation is demonstrated between these ULF Pc5 waves and the consecutive injection of magnetosheath low energy protons. The constancy of the observed frequency peak at 1.8 mHz during quite unsteady solar wind pressure conditions could be reconciled with the surface wave mode model. The 3.1 mHz peak location area probably resembles field-line fluctuations with an interesting appearance of poloidal mode oscillation. It is suggested that the 1.3 mHz wave and its harmonic 2.6 mHz represent global compressional oscillations.  相似文献   

11.
Ionogram observations from the ionosonde at Fuke (9.5°N geomagnetic latitude), a Chinese low latitude station, in 2010–2012 are analyzed to present the features of F3 layer under low and moderate solar activity conditions. Structure of the ionogram, displaying the F3 layer, was more distinct and clear during MSA than LSA periods especially during spring to summer. Start time of occurrence of the F3 layer is about at 0830–0900 LT and is approximately the same for LSA and MSA conditions. The average duration time of the F3 layer occurrence was 181 min per day under F10.7 = 75 condition, 263 min in F10.7 = 99 and 358 min in F10.7 = 125, respectively. The differences of h′F2 and h′F3 exhibited obvious semiannual variation observed at Fuke from March 2010 to June 2012 and increased with increasing solar activity. The difference of foF2 and foF3 in the months February, March, September, October and November is less evident in the middle solar activity period 2011–2012 than the low solar activity 2010 and in the other period it shows a slight increase (0.5 MHz) or keeps constant. The results show that the solar activity dependence of the F3 layer occurrence at low latitude away from the magnetic equator is different from that at near the magnetic equator.  相似文献   

12.
The Indian MST radar facility at Gadanki (13.5°N, 79.2°E) has been utilised to study the propagation of gravity waves from the troposphere/lower stratosphere to the mesosphere and their interaction with the radar backscattered signal variations. The main objective is to correlate vertically propagating gravity waves derived from the tropospheric velocity fields with the dynamics of mesospheric scattering centres. The tropospheric wind velocities and signal strengths over the entire height range have been subjected to power spectral and wavelet analysis to determine the predominant wave periods/amplitudes and the coupling between the lower atmosphere and mesosphere. Results show that (a) the gravity waves are clearly detectable near tropopause heights, (b) while relatively higher period gravity waves (20–50 min) interact with mesospheric scattering centres, the lower period waves (<20 min) are absorbed in the troposphere itself, (c) the mesospheric scattering layers are affected by gravity waves of complementary periods.  相似文献   

13.
In this paper, we study ionospheric total electron content (TEC) disturbances associated with tropical cyclones (TCs). The study relies on the statistical analysis of six cyclones of different intensity which occurred in the North–West Pacific Ocean in September–November 2005. We have used TEC data from the international network of two-frequency ground-based GPS receivers and NCEP/NCAR meteorological archive. TEC variations of different period ranges (02–20 and 20–60 min) are shown to be more intense during TC peaks under quiet geomagnetic conditions. The highest TEC variation amplitudes are registered when the wind speed in the cyclone and the TC area are maximum. The intensification of TEC disturbances is more pronounced when several cyclones occur simultaneously. We have revealed that the ionospheric response to TC can be observed only after the cyclone has reached typhoon intensity. The ionospheric response is more pronounced at low satellite elevation angles.  相似文献   

14.
Radio bursts with fine structures in decimetric–centimetric wave range are generally believed to manifest the primary energy release process during flare/CME events. By spectropolarimeters in 1–2 GHz, 2.6–3.8 GHz, and 5.2–7.6 GHz at NAOC/Huairou with very high temporal (1.25–8 ms) and spectral (4–20 MHz) resolutions, the zebra patterns, spikes, and new types of radio fine structures with mixed frequency drift features are observed during several significant flare/CME events. In this paper we will discuss the occurrence of radio fine structures during the impulsive phase of flares and/or CME initiations, which may be connected to the magnetic reconnection processes.  相似文献   

15.
Using Irkutsk digisonde data obtained in 2003–2011, a morphological analysis of the G condition occurrence has been made. The G condition was found to occur during daylight hours in summer; in winter, it is extremely rare, and its appearance is associated with intense magnetic storms. In the years of moderate solar activity, the G condition is most frequently registered at Kp ? 4, in the forenoon. During low solar activity, it can be observed under quiet geomagnetic conditions; in most cases, local time of its appearance shifts to afternoon hours. The highest percentage of the G condition occurrence (7.7–6.4%) was recorded in June and July 2008 when the levels of solar and geomagnetic activity were abnormally low.  相似文献   

16.
The height–season and year-to-year regularities of parameters of first and second spatial harmonics determine the structure of the stratosphere and mesosphere circulation and its variability. In the period 1992–2002 at heights 0–55 km, the amplitudes and phases of the first and second spatial harmonics in the field of temperature, geopotential height, zonal and meridional wind were calculated by the method of harmonic decomposition. Dispersion (standard or mean square deviation) of their day-to-day and year-to-year variations was calculated by their wavelength constants. Height and season patterns of variability have been estimated. The difference in height–longitude variability for wave numbers m = 1 and 2 has been discovered. At the same time, the intensity of wave disturbances for m = 1 is less than for m = 2 excluding the polar areas, where a significant variability appears at the heights 0–55 km. There is also a tendency for the intensity of year-to-year variations to decrease in comparison with day-to-day variations. In cold and warm periods the amplitude of perturbation waves with m = 2 both for day-to-day and year-to-year variations is greater than for waves with m = 1. Transient height areas in the interval of 20–30 km are more distinct for day-to-day variations of polar area.  相似文献   

17.
The 2nd Polar Patrol Balloon campaign (2nd-PPB) was carried out at Syowa Station in Antarctica during 2002–2003. Identical stratospheric balloon payloads were launched as close together in time as allowed by weather conditions to constitute a cluster of balloons during their flights. A very pronounced negative ion conductivity enhancement was observed at 32 km in the stratosphere below the auroral zone on 27 January 2003 from 1500 to 2200 UT. During this event, the conductivity doubled for an interval of about 7 h. This perturbation was associated with an extensive Pc 1 or Pi 1 wave event that was observed by several Antarctic ground stations, balloon PPB 10, and the Polar spacecraft. No appreciable X-ray precipitation was observed in association with this event, which would point to >60 Mev proton precipitation as a possible magnetosphere–stratosphere coupling mechanism responsible for the conductivity enhancement. Such precipitation is consistent with the wave data. During the latter half of the event, Ez was briefly positive. There was a tropospheric Southern Ocean storm system underneath the balloon during this interval. If the event was associated with this storm system and not energetic proton precipitation, the observations imply an electrified Southern Ocean storm and major perturbations in stratospheric conductivity driven by a tropospheric disturbance. This event represents a poorly understood source for global circuit current. Precipitating energetic proton data from Akebono and NOAA POES spacecraft show significant >16 MeV precipitation was occurring at the location of PPB 8 but not PPB 10, suggesting that proton precipitation was, in fact, the responsible coupling mechanism.  相似文献   

18.
On April 20, 2013, an earthquake of M7.0 occurred in Lushan, Sichuan province, China. This paper investigates the coseismic ionospheric anomalies using GPS (Global Positioning System) data from 23 reference stations in Sichuan province that are a part of the Crustal Movement Observation Network of China (CMONOC). The recorded results show that a clear ionospheric anomaly occurred within 15 min after the earthquake near the epicenter, and the occurrence time of the anomalies recorded by various stations is related to the distance from the epicenter. The maximum anomaly is 0.25 TECu, with a 2 min duration and the distance of the recording station to the epicenter is 83 km. Acoustic waves generated by the crustal vertical movement during the earthquake propagate up to the height of the ionosphere lead to the ionospheric anomaly, and the propagation speed of the acoustic wave is calculated as 0.72 ± 0.04 km/s based on the propagation time and propagation distance, consistent with the average speed of sound waves within a 0–450 km atmospheric height.  相似文献   

19.
The structure of standing Alfvén waves with large azimuthal wave numbers (m ? 1) is studied in a dipole model of the magnetosphere with rotating plasma. In the direction across magnetic shells the structure of such waves is determined by their dispersion associated with curvature of geomagnetic field lines and corresponds to the travelling wave localized between toroidal and poloidal resonant surfaces. In projection into the ionosphere (along geomagnetic field lines) this structure is similar to the structure of a discrete auroral arc. The azimuthal structure of an auroral arc is similar to azimuthal structure of Alfvén waves with m ∼ 100. Possible interaction mechanisms between the Alfvén waves and energetic electron fluxes forming auroral arcs are discussed.  相似文献   

20.
Ionospheric response to tropical cyclones (TCs) was estimated experimentally on the example of three powerful cyclones – KATRINA (23–31 August 2005), RITA (18–26 September 2005), and WILMA (15–25 October 2005). These TCs were active near the USA Atlantic coast. Investigation was based on Total Electron Content (TEC) data from the international network of two-frequency ground-based GPS receivers and the NCEP/NCAR Reanalysis data. We studied the spatial–temporal dynamics of wave TEC disturbances over two periods of ranges (02–20 min and 20–60 min). To select the ionospheric disturbances which were most likely to be associated with the cyclones, maps of TEC disturbances were compared with those of meteorological parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号