首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Liulin-5 experiment is a part of the international project MATROSHKA-R on the Russian segment of the ISS, which uses a tissue-equivalent spherical phantom equipped with a set of radiation detectors. The objective of the MATROSHKA-R project is to provide depth dose distribution of the radiation field inside the sphere in order to get more information on the distribution of dose in a human body. Liulin-5 is a charged particle telescope using three silicon detectors. It measures time resolved energy deposition spectra, linear energy transfer (LET) spectra, particle flux, and absorbed doses of electrons, protons and heavy ions, simultaneously at three depths along the radius of the phantom. Measurements during the minimum of the solar activity in cycle 23 show that the average absorbed daily doses at 40 mm depth in the phantom are between 180 μGy/day and 220 μGy/day. The absorbed doses at 165 mm depth in the phantom decrease by a factor of 1.6–1.8 compared to the doses at 40 mm depth due to the self-shielding of the phantom from trapped protons. The average dose equivalent at 40 mm depth is 590 ± 32 μSV/day and the galactic cosmic rays (GCR) contribute at least 70% of the total dose equivalent at that depth. Shown is that due to the South Atlantic Anomaly (SAA) trapped protons asymmetry and the direction of Liulin-5 lowest shielding zone the dose rates on ascending and descending nodes in SAA are different. The data obtained are compared to data from other radiation detectors on ISS.  相似文献   

2.
In order to effectively study phototropism, the directed growth in response to light, we performed a series of experiments in microgravity to better understand light response without the “complications” of a 1-g stimulus. These experiments were named TROPI (for tropisms) and were performed on the European Modular Cultivation System (EMCS), a laboratory facility on the International Space Station (ISS). TROPI-1 was performed in 2006, and while it was a successful experiment, there were a number of technical difficulties. We had the opportunity to perform TROPI-2 in 2010 and were able to optimize experimental conditions as well as to extend the studies of phototropism to fractional gravity created by the EMCS centrifuge. This paper focuses on how the technical improvements in TROPI-2 allowed for a better experiment with increased scientific return. Major modifications in TROPI-2 compared to TROPI-1 included the use of spaceflight hardware that was off-gassed for a longer period and reduced seed storage (less than 2 months) in hardware. These changes resulted in increased seed germination and more vigorous growth of seedlings. While phototropism in response to red illumination was observed in hypocotyls of seedlings grown in microgravity during TROPI-1, there was a greater magnitude of red-light-based phototropic curvature in TROPI-2. Direct downlinking of digital images from the ISS in TROPI-2, rather than the use of analog tapes in TROPI-1, resulted in better quality images and simplified data analyses. In TROPI-2, improved cryo-procedures and the use of the GLACIER freezer during transport of samples back to Earth maintained the low temperature necessary to obtain good-quality RNA required for use in gene profiling studies.  相似文献   

3.
4.
Two ESA facilities will be available for animal research and other biological experiments on the International Space Station: the European Modular Cultivation System (EMCS) in the US Lab "Destiny" and BIOLAB in the European "Columbus" Laboratory. Both facilities use standard Experiment Containers, mounted on two centrifuge rotors allowing either research in microgravity or acceleration studies with variable g-levels from 0.001 to 2.0 x g. Standard interface plates provide each container with power and data lines, gas supply (controlled CO2, O2 concentration and relative humidity), and--for EMCS only--connectors to fresh and waste water reservoirs. The experiment hardware inside the containers will be developed by the user, but ESA conducted a feasibility study for several kinds of Experiment Support Equipment with potential use for research on small animals: design concepts for experiments with insects, with aquatic organisms like rotifers and nematodes, and with small aquatic animals (sea urchin larvae, tadpoles, fish youngsters) are described in detail in this presentation. Also ESA's initial steps to support experiments with rodents on the Space Station are presented.  相似文献   

5.
The use of geoid heights has been one of the available methodologies utilized for the independent calibration/validation of altimeters on-board satellites. This methodology has been employed for long in the Gavdos dedicated cal/val facility (Crete, Greece), where calibration results for the Jason satellites have been estimated, both for ascending and descending passes. The present work gives a detailed overview of the methodology followed in order to estimate a high-resolution and accuracy gravimetric geoid model for the wider Gavdos area, in support of the on-going calibration work. To estimate the geoid model, the well-known remove-compute-restore method is used while residual geoid heights are estimated through least-squares collocation so that associated errors are determined as well. It is found that the estimated formal geoid errors from LSC along passes 018 and 109 of Jason satellites, used for the bias estimation, range between ±0.8–1.6 cm. The so-derived geoid heights are employed in the determination of the Jason-2 altimeter bias for all available cycles (cycles 1-114, spanning the period from July 2008 to August 2011) together with the RioMed DOT model. From the results acquired the Jason-2 bias has been estimated to be +196.1 ± 3.2 mm for pass 109 and +161.9 ± 5.1 mm for pass 018. Within the same frame, the GOCE/GRACE-based geopotential model GOCO02s has been used to estimate the mean dynamic ocean topography and the steady-state circulation in the area around Gavdos. The so-derived DOT model was used to estimate the Jason-2 bias in an effort to evaluate the performance of satellite-only geoid models and investigate whether their spatial resolution and accuracy provides some improvement w.r.t. traditional local gravimetric geoids. From the results acquired with geoid heights from GOCO02s, the estimated Jason-2 bias deviates significantly from that of the local gravimetric model, which can be attributed to a possible mean offset and the low resolution of GOCE-based GGMs. On the other hand, when the newly estimated GOCE-based DOT was employed with geoid heights from the local gravimetric geoid model, the Jason-2 bias has been estimated to be +185.1 ± 3.2 mm for pass 109 and +130.2 ± 5.1 mm for pass 018.  相似文献   

6.
The microgravity environment aboard orbiting spacecraft has provided a unique laboratory to explore topics in basic plant biology as well as applied research on the use of plants in bioregenerative life support systems. Our group has utilized the European Modular Cultivation System (EMCS) aboard the International Space Station (ISS) to study plant growth, development, tropisms, and gene expression in a series of spaceflight experiments. The most current project performed on the ISS was termed Seedling Growth-1 (SG-1) which builds on the previous TROPI (for tropisms) experiments performed in 2006 and 2010. Major technical and operational changes in SG-1 (launched in March 2013) compared to the TROPI experiments include: (1) improvements in lighting conditions within the EMCS to optimize the environment for phototropism studies, (2) the use of infrared illumination to provide high-quality images of the seedlings, (3) modifications in procedures used in flight to improve the focus and overall quality of the images, and (4) changes in the atmospheric conditions in the EMCS incubator. In SG-1, a novel red-light-based phototropism in roots and hypocotyls of seedlings that was noted in TROPI was confirmed and now can be more precisely characterized based on the improvements in procedures. The lessons learned from sequential experiments in the TROPI hardware provide insights to other researchers developing space experiments in plant biology.  相似文献   

7.
Performance of efficient single-person cardiopulmonary resuscitation (CPR) is vital to maintain cardiac and cerebral perfusion during the 2–4 min it takes for deployment of advanced life support during a space mission. The aim of the present study was to investigate potential differences in upper body muscle activity during CPR performance at terrestrial gravity (+1Gz) and in simulated microgravity (μG). Muscle activity of the triceps brachii, erector spinae, rectus abdominis and pectoralis major was measured via superficial electromyography in 20 healthy male volunteers. Four sets of 30 external chest compressions (ECCs) were performed on a mannequin. Microgravity was simulated using a body suspension device and harness; the Evetts–Russomano (ER) method was adopted for CPR performance in simulated microgravity. Heart rate and perceived exertion via Borg scores were also measured. While a significantly lower depth of ECCs was observed in simulated microgravity, compared with +1Gz, it was still within the target range of 40–50 mm. There was a 7.7% decrease of the mean (±SEM) ECC depth from 48 ± 0.3 mm at +1Gz, to 44.3 ± 0.5 mm during microgravity simulation (p < 0.001). No significant difference in number or rate of compressions was found between the two conditions. Heart rate displayed a significantly larger increase during CPR in simulated microgravity than at +1Gz, the former presenting a mean (±SEM) of 23.6 ± 2.91 bpm and the latter, 76.6 ± 3.8 bpm (p < 0.001). Borg scores were 70% higher post-microgravity compressions (17 ± 1) than post +1Gz compressions (10 ± 1) (p < 0.001). Intermuscular comparisons showed the triceps brachii to have significantly lower muscle activity than each of the other three tested muscles, in both +1Gz and microgravity. As shown by greater Borg scores and heart rate increases, CPR performance in simulated microgravity is more fatiguing than at +1Gz. Nevertheless, no significant difference in muscle activity between conditions was found, a result that is favourable for astronauts, given the inevitable muscular and cardiovascular deconditioning that occurs during space travel.  相似文献   

8.
The Multi-Spectral Camera (MSC) on the KOrea Multi-Propose SATellite (KOMPSAT)-2 was developed and launched as a main payload to provide a One(1) m panchromatic image and four(4) band four(4) m multi-spectral images at an altitude of 685 km covering a swath width of 15 km. These images, archived around the world, are a useful resource for space applications in agriculture, cartography, geology, forestry, regional planning, surveillance, and national security. The image quality of KOMPSAT-2 depends upon its image chain, which is comprised of an on-board system in the satellite and a processing system at the ground station. Therefore, in this study we determine the factors that have a major impact on the image quality through an investigation of the entire image chain. Consequently, two methods, involving a compression algorithm and a deconvolution technique, were determined as having a significant influence on the KOMPSAT-2 image quality. The compression algorithm of KOMPSAT-2 is rate-controlled JPEG-like algorithm that controls the mismatch between the input and output data rate. The ability to control the input/output data rate may be useful during the operation of the satellite but can also lower the overall image quality. The deconvolution technique may increase the sharpness of images, but it can also amplify the image noise level. Therefore, we propose methods of wavelet-based compression and denoising as an alternative to currently existing algorithms. Satisfactory results were obtained through experimentation with these two algorithms, and they are expected to be successfully implemented into the future KOMPSAT series to yield high-quality images for enhanced earth observation.  相似文献   

9.
Radiometric measurements of the thermal radiation originating from the moon’s surface were obtained using an infrared detector operating at wavelengths between 8 and 14 μm. The measurements cover a full moon cycle. The variation of the moon’s temperature with the lunar phase angle was established. The lunar temperatures were 391 ± 2.0 K for the full moon, 240 ± 3.5 K for the first quarter, and 236 ± 3 K for the last quarter. For the rest of the phase angles, the lunar temperature varied between 170 and 380 K. Our results are comparable with those obtained previously at these phase angles. For the new moon phase, the obtained temperature was between 120 and 133 K. With the exception of the new moon phase, our measurements at all the phase angles were consistent with those obtained using Earth-based data and those obtained by the Diviner experiment and the Clementine spacecraft. At the new phase, our measurements were comparable with those obtained from the ground but were significantly higher than those obtained by the Diviner and Clementine data. We attribute this inconsistency to either the calibration curve of our detector, which does not perform well at very low temperatures, or to infrared emission from the atmosphere. A simple linear model to predict the lunar temperature as a function of the phase angle was proposed. The experimental errors that affect the measured temperatures are discussed.  相似文献   

10.
Plants will be an important component in bioregenerative systems for long-term missions to the Moon and Mars. Since gravity is reduced both on the Moon and Mars, studies that identify the basic mechanisms of plant growth and development in altered gravity are required to ensure successful plant production on these space colonization missions. To address these issues, we have developed a project on the International Space Station (ISS) to study the interaction between gravitropism and phototropism in Arabidopsis thaliana. These experiments were termed TROPI (for tropisms) and were performed on the European Modular Cultivation System (EMCS) in 2006. In this paper, we provide an operational summary of TROPI and preliminary results on studies of tropistic curvature of seedlings grown in space. Seed germination in TROPI was lower compared to previous space experiments, and this was likely due to extended storage in hardware for up to 8 months. Video downlinks provided an important quality check on the automated experimental time line that also was monitored with telemetry. Good quality images of seedlings were obtained, but the use of analog video tapes resulted in delays in image processing and analysis procedures. Seedlings that germinated exhibited robust phototropic curvature. Frozen plant samples were returned on three space shuttle missions, and improvements in cold stowage and handing procedures in the second and third missions resulted in quality RNA extracted from the seedlings that was used in subsequent microarray analyses. While the TROPI experiment had technical and logistical difficulties, most of the procedures worked well due to refinement during the project.  相似文献   

11.
针对飞行器执行在轨服务获取空间多维图像的需求,提出了基于单目视觉的三维重构相机技术,利用基于亮度法体素着色原理实现空间目标的三维重构。搭建地面试验,设计模拟圆轨道和椭圆轨道多种试验,验证了在200 m范围内伴飞状态下,实现对目标的高分辨率三维重构图像,重构精度为0.105 m,为识别空间目标特征部位奠定技术基础。  相似文献   

12.
A new and original stereo imaging method is introduced to measure the altitude of the OH nightglow layer and provide a 3D perspective map of the altitude of the layer centroid. Near-IR photographs of the OH layer are taken at two sites separated by a 645 km distance. Each photograph is processed in order to provide a satellite view of the layer. When superposed, the two views present a common diamond-shaped area. Pairs of matched points that correspond to a physical emissive point in the common area are identified in calculating a normalized cross-correlation coefficient (NCC). This method is suitable for obtaining 3D representations in the case of low-contrast objects. An observational campaign was conducted in July 2006 in Peru. The images were taken simultaneously at Cerro Cosmos (12°09′08.2″ S, 75°33′49.3″ W, altitude 4630 m) close to Huancayo and Cerro Verde Tellolo (16°33′17.6″ S, 71°39′59.4″ W, altitude 2272 m) close to Arequipa. 3D maps of the layer surface were retrieved and compared with pseudo-relief intensity maps of the same region. The mean altitude of the emission barycenter is located at 86.3 km on July 26. Comparable relief wavy features appear in the 3D and intensity maps. It is shown that the vertical amplitude of the wave system varies as exp (Δz/2H) within the altitude range Δz = 83.5–88.0 km, H being the scale height. The oscillatory kinetic energy at the altitude of the OH layer is comprised between 3 × 10−4 and 5.4 × 10−4 J/m3, which is 2–3 times smaller than the values derived from partial radio wave at 52°N latitude.  相似文献   

13.
The main objective of a life support system for space missions is to supply a crew with food, water and oxygen, and to eliminate their wastes. The ultimate goal is to achieve the highest degree of closure of the system using controlled processes offering a high level of reliability and flexibility. Enhancement of closure of a biological life support system (BLSS) that includes plants relies on increased regeneration of plant waste, and utilization of solid and liquid human wastes. Clearly, the robustness of a BLSS subjected to stress will be substantially determined by the robustness of the plant components of the phototrophic unit. The aim of the present work was to estimate the heat resistance of two plants (wheat and lettuce) grown on human wastes. Human exometabolites mineralized by hydrogen peroxide in an electromagnetic field were used to make a nutrient solution for the plants. We looked for a possible increase in the heat tolerance of the wheat plants using changes in photosynthetically active radiation (PAR) intensity during heat stress. At age 15 days, plants were subjected to a rise in air temperature (from 23 ± 1 °C to 44 ± 1 °С) under different PAR intensities for 4 h. The status of the photosynthetic apparatus of the plants was assessed by external СО2 gas exchange and fluorescence measurements. The increased irradiance of the plants during the high temperature period demonstrated its protective action for both the photosynthetic apparatus of the leaves and subsequent plant growth and development. The productivity of the plants subjected to temperature changes at 250 W m−2 of PAR did not differ from that of controls, whereas the productivity of the plants subjected to the same heat stress but in darkness was halved.  相似文献   

14.
The mountain-based GPS radio occultation is a novel approach to lower atmospheric profiling. The experiments of the mountain-based GPS radio occultation were conducted on the top of Mt. Yaogu (29.38°N, 113.68°E, ∼1240 m) on December 17, 2003, and on the top of Mt. Jiugong (29.39°N, 114.65°E, ∼1550 m) on July 24, 2004. Based on these observation data, the scientific data processing software has been developed and is used to retrieve successfully the atmospheric refractivity profiles. The validation experiment was performed on the top of Mt. Wuling (40.60°N, 117.48°E, ∼2118 m) during August 1–29, 2005. Collocated automatic weather station and the radiosondes nearby were operated simultaneously for the comparison campaign. Results show that the radio occultation technique obtained about 40 profiles every day with the receiver antenna pointing to the south. Comparisons show that the refractivity measured by occultation agree well with those by the radiosondes, but not well with those by the automatic weather station due to their much different geographic locations of measurements. Results of these experiments suggest that the mountain-based GPS radio occultation is an economic reliable novel technique monitoring temporal and spatial variations of local lower atmospheric environments.  相似文献   

15.
The objective of this work was to investigate the variability of surface organic carbon within the hyper-arid Yungay region of the Atacama Desert. The fraction of Labile Organic Carbon (LOC) in these samples varied from 2 to 73 μg per gram of soil with a bi-modal distribution with average content of 17 ± 9 μg LOC and 69 ± 3 μg LOC for “low” and “high” samples, respectively. Interestingly, there was no relation between organic levels and geomorphologic shapes. While organics are deposited and distributed in these soils via eolic processes, it is suggested that fog is the dynamic mechanism that is responsible for the variability and peaks in organic carbon throughout the area, where a “high” LOC content sample could be indicative of a biological process. It was determined that there was no significant difference between topological feature or geographical position within the hyper-arid samples and LOC. This very curious result has implications for the investigation of run-off gullies on the planet Mars as our work suggests a need for careful consideration of the expectation of increases in concentrations of organic materials associated with following aqueous altered topology.  相似文献   

16.
空间目标三维重建对空间态势感知和理论研究具有重要意义。针对空间目标图像存在的由纹理重复导致的错误重建问题,提出了一种新的基于运动信息恢复三维场景结构策略。该策略将序列目标图像的成像时间顺序作为先验信息,顺序地加入新图像进行迭代,以避免因目标结构对称、纹理重复所导致的重建错误。同时针对空间目标成像数据匮乏的问题,进行了空间目标图像仿真,并开展了空间目标地面模拟成像实验研究。结果表明:运动分析结果精确,对噪声有较强的鲁棒性,恢复出的目标三维点云能在一定程度上表达目标的结构信息。同时给出了进行空间目标三维重建时图像序列应满足的边界条件。   相似文献   

17.
Study of depth–dose distributions for intermediate energy ion beams in tissue-like media such as polyethylene (CH2)n provides a good platform for further improvements in the fields of hadrontherapy and space radiation shielding. The depth–dose distributions for 12C ions at various energies and for light and intermediate ion beams (3He, 16O, 20Ne and 28Si) as well as for heavy ions 56Fe in polyethylene were estimated by using simulation toolkit: Geant4. Calculations were performed mainly by considering two different combinations of standard electromagnetic (EM), binary cascade (BIC), statistical multifragmentation (SMF) and Fermi breakup (FB) models. The energies of the ion beams were selected to achieve the Bragg peaks at predefined position (∼60 mm) and as per their availability. Variations of peak-to-entrance ratio (from 7.44 ± 0.05 to 8.87 ± 0.05), entrance dose (from 2.89 ± 0.01 to 203.71 ± 0.63 MeV/mm) and entrance stopping power (from 3.608 to 208.858 MeV/mm, calculated by SRIM) with atomic number (Z) were presented in a systematic manner. The better peak-to-entrance ratio and less entrance dose in the region Z = 2 to 8 (i.e. 3He to 16O) may provide the suitability of the ion beams for hadrontherapy.  相似文献   

18.
基于SVDD的三维目标多视点视图建模   总被引:1,自引:1,他引:0  
  相似文献   

19.
The measurements of aerosol optical properties were carried out during April 2006 to March 2011 over Mohal (31.9°N, 77.12°E) in the northwestern Indian Himalaya, using the application of ground-based Multi-wavelength Radiometer (MWR) and space-born Moderate Resolution Imaging Spectroradiometer (MODIS) remote sensors. The average (±standard deviation) values of aerosol optical depth (AOD) at 500 nm, Ångström exponent and turbidity coefficient during the entire measurement period were 0.25 ± 0.09, 1.15 ± 0.42 and 0.12 ± 0.06 respectively. About 86% AOD values retrieved from MODIS remote sensor were found within an uncertainty limit (Δτ = ±0.05 ± 0.15τ). In general, the MWR derived AOD values were higher than that of MODIS retrieval with absolute difference ∼0.02. During the entire period of measurement space-born MODIS remote sensor and ground-based MWR observation showed good correspondence with significant correlation coefficient ∼0.78 and root mean square difference ∼0.06. For daily observations the relative difference between these two estimates stood less than 9%. However, satellite-based and ground-based observation showed good correspondence, but further efforts still needed to eliminate systematic errors in the existing MODIS algorithm.  相似文献   

20.
Integer ambiguity resolution (IAR) can improve precise point positioning (PPP) performance significantly. IAR for PPP became a highlight topic in global positioning system (GPS) community in recent years. More and more researchers focus on this issue. Progress has been made in the latest years. In this paper, we aim at investigating and demonstrating the performance of a global zero-differenced (ZD) PPP IAR service for GPS users by providing routine ZD uncalibrated fractional offsets (UFOs) for wide-lane and narrow-lane. Data sets from all IGS stations collected on DOY 1, 100, 200 and 300 of 2010 are used to validate and demonstrate this global service. Static experiment results show that an accuracy better than 1 cm in horizontal and 1–2 cm in vertical could be achieved in ambiguity-fixed PPP solution with only hourly data. Compared with PPP float solution, an average improvement reaches 58.2% in east, 28.3% in north and 23.8% in vertical for all tested stations. Results of kinematic experiments show that the RMS of kinematic PPP solutions can be improved from 21.6, 16.6 and 37.7 mm to 12.2, 13.3 and 34.3 mm for the fixed solutions in the east, north and vertical components, respectively. Both static and kinematic experiments show that wide-lane and narrow-lane UFO products of all satellites can be generated and provided in a routine way accompanying satellite orbit and clock products for the PPP user anywhere around the world, to obtain accurate and reliable ambiguity-fixed PPP solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号