首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results of proton energy (tens keV – several MeV) spectrum measurements near geomagnetic equator (L < 1.15) at low altitudes (<1000 km) are presented. We used data of experiments onboard ACTIVE, SAMPEX, NOAA TIROS-N satellites and SPRUT-VI (MIR station) and cover a time range of about 30 years (including previous measurements). It was found that the kappa-distribution function fits the experimental spectrum with the best correlation coefficient. A comparison of energy spectra of near-equatorial protons and ring-current protons was made. Using the estimation of the life time of near-equatorial protons we explain the difference in spectral indices of radiation belt and near-equatorial proton formation. We conclude that the ring current is the main source of the near-equatorial protons.  相似文献   

2.
Dynamical features of proton fluxes at high and middle latitudes were studied based on data measured by Sun-synchronous low-altitude (800 km height) polar-orbiting three NOAA series satellites: POES 15, 16, and 17 during the geomagnetic storm on January, 21–22, 2005. Data from three satellites that passed the Northern hemisphere along different MLTs allow reconstructing the longitudinal distribution of the proton fluxes. Measurements of protons with energies of 30–80 keV and 80–240 keV (the ring current energy range) by 0- and 90-detectors were used to evaluate and compare the longitudinal asymmetry of proton flux distribution measured in the regions equatorward and poleward of the isotropic boundary. It was found that during all the phases of the geomagnetic storm distribution of the maximum flux of precipitating protons (0-detector data) is sufficiently asymmetric. The maximal flux position along MLT is moving from pre-midnight sector in quiet time to post-midnight one before and during SSC and moving back during recovery phase. The longitudinal distribution of precipitation maxima demonstrates the local increase in afternoon sector (approximately at 13:30 MLT) and decrease in the dusk one during SSC. These features are evident consequence of the magnetosphere compression. To identify the origin of the particles, the locations of maximum fluxes have been projected to the magnetosphere. It was determined that during geomagnetic storm main and recovery phases maximum fluxes were measured at latitudes poleward of the isotropic boundary. To evaluate the trapped particle flux asymmetry, the particle fluences (90-detector data) were calculated along the satellite orbit from L = 2 to the isotropic boundary. The total fluences of trapped particles calculated along the satellite orbit show regular asymmetry between dusk and dawn during main and recovery phases. The maximal intensity of proton fluxes of both investigated populations located poleward and equatorward of the isotropic boundary is achieved during SSC. The total flux measured during crossing the anisotropic region can be considered as a proxy for ring current injection rate.  相似文献   

3.
The proton fluxes from the low-Earth orbital satellites databases (NPOES-17 and CORONAS-F) were analyzed for the quiet geomagnetic period in April 2005. The satisfactory consent was found between the experimental and the AP8 model fluxes of the trapped protons with energy more than ∼10 MeV. At the same time, trapped proton fluxes with energy less than 10 MeV measured by LEO satellites were higher than the ones predicted by the AP8 model in the region of the SAA (drift shell L < 1.5).  相似文献   

4.
We continue to analyze the distribution of electron fluxes with energy 30–500 keV under the radiation belts at low and middle latitudes (L = 1.2–1.9) using experimental data obtained onboard ACTIVE satellite. Special attention is given to altitudinal distribution of electron fluxes and detailed analysis of these electron formations. We observe three main regions of electron flux registration that seem to exist constantly under the radiation belts. These regions are: magneto-conjugated to SAA region (in the north hemisphere), local zone of low intense electron flux accumulation to the west of SAA, and extensive region in the north hemisphere to the east. The analysis of experimental data obtained from ACTIVE satellite (orbit height 500–2500 km) shows that electron fluxes are registered in the wide altitude range up to 1100 km. It is shown that these formations have complicated initial structure with two regions of flux maximums: at L = 1.3 and L = 1.6–1.8. We compare particle data with low frequency (LF) data (ARIEL-4 satellite) and high frequency (HF) data (CORONAS-I satellite). Also we discuss the possible mechanisms of the appearance of these formations under the radiation belts.  相似文献   

5.
This paper examines high resolution (ΔE/E = 0.15) photoelectron energy spectra from 10 eV to 1 keV, created by solar irradiances between 1.2 and 120 nm. The observations were made from the FAST satellite at ∼3000 km, equatorward of the auroral oval for the July–August, 2002 solar rotation. These data are compared with the solar irradiance observed by the Solar EUV Experiment (SEE) on the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) satellite and fluxes calculated using the Field Line Interhemispheric Plasma (FLIP) code. The 41 eV photoelectron flux, which corresponds to solar EUV fluxes near 20 nm, shows a clear solar rotation variation in very good agreement with the EUV flux measurements. This offers the possibility that the 41 eV photoelectron flux could be used as a check on measured solar EUV fluxes near 20 nm. Because of unexpected noise, the solar rotation signal is not evident in the integral photoelectron flux between 156 and 1000 eV corresponding to EUV wavelengths between 0.1 and 7 nm measured by the SEE instrument. Examination of daily averaged photoelectron fluxes at energies between 25 and 500 eV show significant changes in the photoelectron spectra in response X and M class flares. The intensity of photoelectrons produced in this energy region is primarily due to two very narrow EUV wavelength regions at 2.3 and 3 nm driving Auger photoionization in O at 500 eV and N2 at ∼360 eV. Comparison of calculated and daily averaged electron fluxes shows that the HEUVAC model solar spectrum used in the FLIP code does not reproduce the observed variations in photoelectron intensity. In principle, the 21 discrete photoelectron energy channels could be used to improve the reliability of the solar EUV fluxes at 2.3 and 3 nm inferred from broad band observations. In practice, orbital biases in the way the data were accumulated and/or noise signals arising from natural and anthropogenic longitudinally restricted sources of ionization complicate the application of this technique.  相似文献   

6.
The Juno spacecraft made the first in-situ observations of energetic particles in the polar region of Jupiter’s magnetosphere. After Jupiter Orbit Insertion (JOI) in July 2016, data from ~20 Juno perijoves (PJs) obtained by Juno/JEDI are accumulated, providing an excellent opportunity to study the long term spatio-temporal distribution of energetic particles in Jupiter’s radiation belt. We transform Juno’s position from a Cartesian to a magnetic coordinate system by tracing magnetic field lines based on a fourth order Runge-Kutta method. Then the fluxes of energetic electrons from PJ1 to PJ14 sorted by different locations in magnetic coordinate space and the data are well organized by the L-shell parameter. The variation of electron flux increases with L-shell. The deviation (the ratio of the 75th percentile to the 25th percentile) of 0.51 MeV electron flux varies from a factor of 1.23 near L = 9.5 to 27.57 near L = 15.5. However, the mean flux decreases by about one order of magnitude in the same region. The electron spectra at larger L-shells are softer than that at smaller L-shells. On the other hand, the electron flux decreases more rapidly with increased L-shell when the location is off the equator. Along an L-shell, the electron flux decrease at first and then increase again from equator to mid-latitude region. In addition, we compare the statistical results with the widely used GIRE2 model. JEDI data correspond well with the GIRE2 model when the L-shell is > 14.75. GIRE2 underestimate the electron flux for L-shell smaller than 13.25. These results of this analysis are applicable to estimate the effects of the radiation environment in Jupiter’s magnetosphere.  相似文献   

7.
At the interface between the upper atmosphere and the radiation belt region, there exists a secondary radiation belt consisting mainly of energetic ions that have become neutralized in the ring current and the main radiation belt and then re-ionized by collisions in the inner exosphere. The time history of the proton fluxes in the 0.64 – 35 MeV energy range was traced in the equatorial region beneath the main radiation belts during the three year period from 21 February 1984 to 26 March 1987 using data obtained with the HEP experiment on board the Japanese OHZORA satellite. During most of this period a fairly small proton flux of −1.2 cm−2 s−1 sr−1 was detected on geomagnetic field lines in the range 1.05 < L < 1.15. We report a few surprisingly deep and rapid flux decreases (flux reduction by typically two orders of magnitude). These flux decreases were also long in duration (lasting up to three months). We also registered abrupt flux increases where the magnitude of the proton flux enhancements could reach three orders of magnitude with an enhancement duration of 1–3 days. Possible reasons for these unexpected phenomena are discussed.  相似文献   

8.
We present and discuss here the first version of a data base of extreme solar and heliospheric events. The data base contains now 87 extreme events mostly since 1940. An event is classified as extreme if one of the three critical parameters passed a lower limit. The critical parameters were the X-ray flux (parameter R), solar proton flux (parameter S) and geomagnetic disturbance level (parameter G). We find that the five strongest extreme events based on four variables (X-rays SEP, Dst, Ap) are completely separate except for the October 2003 event which is one the five most extreme events according to SEP, Dst and Ap. This underlines the special character of the October 2003 event, making it unique within 35 years. We also find that the events based on R and G are rather separate, indicating that the location of even extreme flares on the solar disk is important for geomagnetic effects. We also find that S = 3 events are not extreme in the same sense as R > 3 and G > 3 events, while S = 5 events are missing so far. This suggests that it might be useful to rescale the classification of SEP fluxes.  相似文献   

9.
We explore the capabilities of the future space science mission IXO (International X-ray Observatory) for obtaining cosmological redshifts of distant Active Galactic Nuclei (AGNs) using the X-ray data only. We first find in which regions of the X-ray luminosity (LX) versus redshift (z) plane the weak but ubiquitous Fe Kα narrow emission line can deliver an accurate redshift (δz < 5%) as a function of exposure time, using a CCD-based Wide Field Imager (IXO/WFI) as the one baselined for IXO. Down to a 2–10 keV X-ray flux of 10−14 erg cm−2 s−1 IXO/WFI exposures of 100 ks, 300 ks and 1 Ms will deliver 20%, 40% and 60% of the redshifts. This means that in a typical 18′ × 18′ IXO/WFI field of view, 4, 10 and 25 redshifts will be obtained for free from the X-ray data alone, spanning a wide range up to z ∼ 2–3 and fairly sampling the real distribution. Measuring redshifts of fainter sources will indeed need spectroscopy at other wavebands.  相似文献   

10.
We continue monitoring supernova remnant (SNR) 1987A with the Chandra X-ray Observatory. As of 2004 January, bright X-ray spots in the northwest and the southwest are now evident in addition to the bright eastern ring. The overall X-ray spectrum, since 2002 December, can be described by a planar shock with an electron temperature of ∼2.1 keV. The soft X-ray flux is now 8 × 10−13 ergs cm−2 s−1, which is about five times higher than four years ago. This flux increase rate is consistent with our prediction based on an exponential density distribution along the radius of the SNR between the HII region and the inner ring. We still have no direct evidence of a central point source, and place an upper limit of LX = 1.3 × 1034 ergs s−1 on the 3–10 keV band X-ray luminosity.  相似文献   

11.
We analyzed data from four different instruments (HI-SCALE, URAP, SWOOPS, VHM/FGM) onboard Ulysses spacecraft (s/c) and we searched for possible evidence of Jovian emissions when the s/c approached Jupiter during the times of Halloween events (closest time approach/position to Jupiter: February 5, 2004/R = 1683 RJ,θ = ∼49°). In particular, we analyzed extensively the low energy ion measurements obtained by the HI-SCALE experiment in order to examine whether low energy ion/electron emissions show a symmetry, and whether they are observed at north high latitudes upstream from the jovian bow shock, as is known to occur in the region upstream from the south bow shock as well ( Marhavilas et al., 2001). We studied the period from October 2003 to March 2004, as Ulysses moved at distances 0.8–1.2 AU from the planet at north Jovicentric latitudes <75°, and we present here an example of characteristic Jovian periodicities in the measurements around a CIR observed by Ulysses on days ∼348–349/2003 (R = 1894 RJ,θ = 72°). We show that Ulysses observed low energy ion (∼0.055–4.7 MeV) and electron (>∼40 keV) flux and/or spectral modulation with the Jupiter rotation period (∼10 h) as well as variations with the same period in solar wind parameters, radio and magnetic field directional data. In addition, characteristic strong ∼40 min periodic variations were found superimposed on the ∼10 h ion spectral modulation. Both the ∼10 h and ∼40 min ion periodicities in HI-SCALE measurements were present in several cases during the whole period examined (October 2003 to March 2004) and were found to be more evident during some special conditions, for instance during enhanced fluxes around the start (forward shock) and the end (reverse shock) of CIRs. We infer that the Jovian magnetosphere was triggered by the impact of the CIRs, after the Halloween events, and it was (a) a principal source of forward and reverse shock-associated ion flux structures and (b) the cause of generation of ∼10 h quasi-periodic magnetic field and plasma modulation observed by Ulysses at those times.  相似文献   

12.
We examined polar rain flux observed by STSAT-1 in the northern polar cap and compared it with solar wind parameters. We found that the differential energy spectrum of polar rain was similar to that of the solar wind for the energy range 100 eV – 1 keV, although we cannot rule out the possibility of a small amount of acceleration. On the other hand, the low-energy component of the solar wind showed no correlation and, naturally, the solar wind density had only a weak correlation with the polar rain flux. Polar rain flux in the northern hemisphere is most significant for the condition of the interplanetary magnetic field components Bz < 0, Bx < 0, and By > 0, and in this case it correlated well with the magnitude of By and Bz. For other interplanetary magnetic field conditions, the correlation was insignificant. The results are consistent with those reported previously.  相似文献   

13.
The cosmic noise absorption is presented in terms of two-dimensional images obtained from the imaging riometers operated at the Southern Space Observatory (geographic coordinate: 29.4° S, 53.1° W), in São Martinho da Serra, Brazil, Concepcion (geographic coordinate: 36.5° S, 73.0° W) and Punta Arenas (geographic coordinate: 53.0° S, 70.5° W) in Chile, which belong to the South American Riometer Network and are located at the central and periphery regions of the South American Magnetic Anomaly. Correlations are performed between the maximum cosmic noise absorption observed at these stations and the energetic electron flux in two energy channels (>30 and >300 keV) and the proton flux in three energy channels (80–240, 800–2500 and >6900 keV) as measured by the Medium Energy Proton and Electron Detector, during a moderate geomagnetic storm that occurred on September 3, 2008. The results show high correlations between the cosmic noise absorption detected at São Martinho da Serra and the flux of protons with energy between 80 and 240 keV, and the flux of electrons with energies higher than 300 keV, while an additional ionization at Concepcion was correlated with electrons of energies higher than 30 keV. The cosmic noise absorption detected at Punta Arenas was probably caused by the increase of the protons flux with energy between 80 and 240 keV.  相似文献   

14.
The low background values at nighttime of the mesospheric hydroxyl (OH) radical make it easier to single out the atmospheric response to the external solar forcing in Polar Regions. Because of the short lifetime of HOx, it is possible to follow the trails of Solar Energetic Particle (SEP) events in the terrestrial atmosphere, as shown by Storini and Damiani (2008). The sensitivity of this indicator makes discernible not only extreme particle events with a flux peak of several thousand pfu [1 pfu = 1 particle/(cm2 s sr)] at energies >10 MeV, but also those with lower flux up to about 300 pfu. Using data from the Microwave Limb Sounder (MLS) on board the EOS AURA satellite, we examined the correlation of OH abundance vs. solar proton flux for almost all the identified SEP events spanning from November 2004 to December 2006 (later on no more SEP events occurred during Solar Cycle no. 23). The channels at energies greater than 5 MeV and 10 MeV showed the best correlation values (r ∼ 0.90–0.95) at altitudes around 65–75 km whereas, as expected, the most energetic channels were most highly correlated at lower altitudes. Therefore, it is reasonably possible to estimate the solar proton flux from values of mesospheric OH (and viceversa) and it could be useful in studying periods with gaps in the records of solar particles.  相似文献   

15.
The aim of the study is to explore whether age at death from cardiovascular diseases depends on solar and geomagnetic activities. The data were collected for 1970–1978 in Novosibirsk, West Siberia, for industrial workers of Siberian origin. The Spearman correlations are computed between linearly detrended lifespan and daily or monthly physical variables to establish immediate (lag, L = 0), delayed (L = 1–3 days) and cumulative (L = ±30 days) influences. Significant correlations ranging from r = −0.26 to r = −0.30 for L from 0 to 3, respectively, are found for men between solar radio flux at wavelength 10.7 cm and age at death from acute myocardial infarction (AMI) but not from acute heart failure, ischemic heart disease and stroke. For AMI, women’s longevity displays an opposite (direct) association with the average solar character occurred at the calendar month of death. The index of geomagnetic activity, Ap, exhibits inverse association with longevity for the AMI stratum for both sexes. GLM univariate procedure revealed higher contribution of Ap to the variance of lifespan compared to season of death. The individual age at death susceptibility to cosmic influences is found to depend upon solar activity at year of birth. It is concluded that associations between the lifespan for cardiovascular decedents and the indices of solar and geomagnetic activities at time of death and of birth are cause-of-death- and sex-specific.  相似文献   

16.
We have analysed a sample of 328 time-integrated GRB prompt emission spectra taken via the Konus instrument on board the US GGS-Wind spacecraft between 2002 and 2004 using a couple of two-components models, Cut-off Power Law (CPL) + Power Law (PL) and blackbody (BB) + PL. The spectra show clear deviation from the Band function. The PL term is interpreted as the low energy tail of a nonthermal emission mechanism. The distributions of corresponding index β give values β < −2/3 consistent with synchrotron and synchrotron self-Compton mechanisms. The distribution of low energy index α associated with the CPL term shows clear discordance with synchrotron models for 31.4% of the analysed GRBs with values exceeding that for the line of death, α = −2/3. Then, a set of nonthermal radiation mechanisms producing harder slopes, i.e., α > −2/3, are presented and discussed. For the remaining majority (68.6%) of GRBs with CPL index α < −2/3, we show that optically thin synchrotron produced by a power law electron distribution of type, N(γ) ∼ γp, γ1 < γ < γ2, for finite energy range (γ2 ≠ ∞) is a likely emission mechanism with α ∼−(p + 1)/2 in the frequency range ν1 ? ν ? ν2 (where ν2 = η2ν1 with η = γ2/γ1), such that for p > 1/3, one gets α < −2/3. We also show that corresponding spectra in terms of Fν and νFν functions are peaked around frequency ν2 instead of ν1, respectively for p < 1 and p < 3. Besides, thermal emission is examined taking a single Planck function for fitting the low energy range. It can be interpreted as an early emission from the GRB fireball photosphere with observed mean temperature, kT′ ∼ 16.8 keV. Furthermore, we have performed a statistical comparison between the CPL + PL and BB + PL models finding comparable χ2-values for an important fraction of GRBs, which makes it difficult to distinguish which model and specific radiation mechanism (possible thermal or nonthermal γ-ray emissions) are best suitable for describing the reported data. Therefore, additional information for those bursts, such as γ-ray polarization, would be highly desirable in future determinations of GRBs observational data.  相似文献   

17.
New experimental data obtained on the orbital station ‘MIR’ in 1991 during solar maximum are discussed. Electron fluxes with Ee>75 keV were registered for three different directions as well as for electrons with Ee>300 and 600 keV. Spatial and time distributions of electron fluxes in the trapping region are presented. In the inner radiation belt an additional maximum is observed at L=1.25–1.35, and the fluxes in the 22-05h MLT interval are 2–3 orders of magnitude smaller, than during other local times. In this region a flattening of the electron spectrum is observed. The results obtained were compared with the AE-8 model.  相似文献   

18.
The photometric-magnetic dynamical model handles the evolution of an individual sunspot as an autonomous nonlinear, though integrable, dynamical system. One of its consequences is the prediction of an upper limit of the sunspot areas. This upper limit is analytically expressed by the model parameters, while its calculated value is verified by the observational data. In addition, an upper limit for the magnetic strength inside the sunspot is also predicted, and then, we obtain the following significant result: The upper limit of the total magnetic flux in an active region is found to be of about 7.23 × 1023 Mx, namely, phenomenologically equal to the magnetic flux concentrated in the totality of the granules of the quiet Sun, having a typical maximum magnetic strength of about 12G. Therefore, the magnetic flux concentrated in an active region cannot exceed the magnetic flux concentrated in the photosphere as a whole.  相似文献   

19.
Alpha Particle X-ray Spectrometer (APXS) payload configuration for Chandrayaan-2 rover has been completed recently and fabrication of mechanical assembly, PCB layout design and fabrication are in progress. Here we present the design and performance evaluation of various subsystems developed for APXS payload. The low energy threshold of <1 keV and the energy resolution of ∼150 eV at 5.9 keV, for the Silicon Drift Detector (SDD), as measured from the developed APXS electronics is comparable to the standard spectrometers available off-the-shelf. We have also carried out experiments for measuring fluorescent X-ray spectrum from various standard samples from the USGS catalog irradiated by the laboratory X-ray source 241Am with 1 mCi activity. It is shown that intensities of various characteristic X-ray lines are well correlated with the respective elemental concentrations.  相似文献   

20.
研究FY-3A卫星观测到的内辐射带质子通量分布,发现3~5MeV能道出现除南大西洋异常区以外的第二个异常区.该异常区是一个质子通量的次极值区,由于该质子通量极值区比主南大西洋异常区强度弱、面积小,因此称之为次南大西洋异常区.通过在主南大西洋异常区和次南大西洋异常区分别选取有代表性的样本点进行研究,发现内辐射带质子通量随投掷角近似呈正态分布,当投掷角在90°附近时,质子通量出现极大值;当投掷角大于120°或者小于60°时,质子通量几乎为零.此外,主南大西洋异常区质子通量在各个能道均为完全各向异性,次南大西洋异常区质子通量随着能道增高逐渐趋于各向同性.通过NOAA观测数据对此规律进行了验证,并由此解释了次南大西洋异常区的形成机理.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号